Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel alloys chloride

Nickel [7440-02-0] Ni, recognized as an element as early as 1754 (1), was not isolated until 1820 (2). It was mined from arsenic sulfide mineral deposits (3) and first used in an alloy called German Silver (4). Soon after, nickel was used as an anode in solutions of nickel sulfate [7786-81 A] NiSO, and nickel chloride [7718-54-9] NiCl, to electroplate jewelry. Nickel carbonyl [13463-39-3] Ni(C02)4, was discovered in 1890 (see Carbonyls). This material, distilled as a hquid, decomposes into carbon monoxide and pure nickel powder, a method used in nickel refining (5) (see Nickel and nickel alloys). [Pg.9]

Corrosion. Aqueous solutions of citric acid are mildly corrosive toward carbon steels. At elevated temperatures, 304 stainless steel is corroded by citric acid, but 316 stainless steel is resistant to corrosion. Many aluminum, copper, and nickel alloys are mildly corroded by citric acid. In general, glass and plastics such as fiber glass reinforced polyester, polyethylene, polypropylene, poly(vinyl chloride), and cross-linked poly(vinyl chloride) are not corroded by citric acid. [Pg.181]

An especially insidious type of corrosion is localized corrosion (1—3,5) which occurs at distinct sites on the surface of a metal while the remainder of the metal is either not attacked or attacked much more slowly. Localized corrosion is usually seen on metals that are passivated, ie, protected from corrosion by oxide films, and occurs as a result of the breakdown of the oxide film. Generally the oxide film breakdown requires the presence of an aggressive anion, the most common of which is chloride. Localized corrosion can cause considerable damage to a metal stmcture without the metal exhibiting any appreciable loss in weight. Localized corrosion occurs on a number of technologically important materials such as stainless steels, nickel-base alloys, aluminum, titanium, and copper (see Aluminumand ALUMINUM ALLOYS Nickel AND nickel alloys Steel and Titaniumand titanium alloys). [Pg.274]

Soluble anode materials are not always a pure metal. In acid, low chloride nickel solutions, pure nickel does not corrode well, and small amounts of specific impurities are added to make the nickel more active, allowing more efficient dissolution. For example, since the early 1960s, nickel anode material containing a small amount of nickel sulfide [16812-54-7] NiS, has been commercially available and important in nickel sulfamate [13770-85-3] Ni(H2N02S)2, plating baths. These anodes corrode at a lower potential then pure nickel or other nickel anode materials (see Nickel and nickel alloys). [Pg.147]

The submitters employed a nickel autoclave and noted that product from Step D may contain a small amount of hydrogen chloride or chlorinated material than can adversely affect a stainless steel pressure vessel. Hastelloy C is a high-nickel alloy. [Pg.154]

A high-nickel alloy is used for increased strength at elevated temperature, and a chromium content in excess of 20% is desired for corrosion resistance. An optimum composition to satisfy the interaction of stress, temperature, and corrosion has not been developed. The rate of corrosion is directly related to alloy composition, stress level, and environment. The corrosive atmosphere contains chloride salts, vanadium, sulfides, and particulate matter. Other combustion products, such as NO, CO, CO2, also contribute to the corrosion mechanism. The atmosphere changes with the type of fuel used. Fuels, such as natural gas, diesel 2, naphtha, butane, propane, methane, and fossil fuels, will produce different combustion products that affect the corrosion mechanism in different ways. [Pg.422]

Nickel alloys Sfiong alkali Polythionic acids Chloride ion... [Pg.894]

Steel is the most common constructional material, and is used wherever corrosion rates are acceptable and product contamination by iron pick-up is not important. For processes at low or high pH, where iron pick-up must be avoided or where corrosive species such as dissolved gases are present, stainless steels are often employed. Stainless steels suffer various forms of corrosion, as described in Section 53.5.2. As the corrosivity of the environment increases, the more alloyed grades of stainless steel can be selected. At temperatures in excess of 60°C, in the presence of chloride ions, stress corrosion cracking presents the most serious threat to austenitic stainless steels. Duplex stainless steels, ferritic stainless steels and nickel alloys are very resistant to this form of attack. For more corrosive environments, titanium and ultimately nickel-molybdenum alloys are used. [Pg.898]

In practice, pitting of nickel and nickel alloys may be encountered if the corrosive environment contains chloride or other aggressive ions and is more liable to develop in acidic than in neutral or alkaline solutions. In acidic solutions containing high concentrations of chloride, however, passivity is likely to break down completely and corrosion to proceed more or less uniformly over the surface. For this reason nickel and those nickel alloys which rely on passivity for their corrosion resistance are not resistant to HCl. [Pg.778]

Some duplex alloys have even better pitting resistance than type 316 and should be considered in severely pitting media. Titanium is virtually immune to chloride pitting and cupro-nickel alloys are used for condensers where sea-water is the coolant high pitting resistance in this duty is claimed for Cu-25Ni-20Cr-4-5Mo. [Pg.22]

Tin-nickel alloy coatings are deposited from a bath containing stannous chloride, nickel chloride, ammonium bifluoride and ammonia " . The useful deposit contains 65% tin and the conditions are maintained to obtain... [Pg.511]

Diaminopyridine has been prepared by reduction of 2-amino-3-nitropyridine with iron and aqueous acidified ethanol,3 tin and hydrochloric acid,6 or stannous chloride and hydrochloric acid,6 by catalytic reduction of 3-amino-2-nitropyridine,6 by reduction of 3-amino-2-nitropyridine,7 2-amino-5-chloro-3-nitro-pyridine,8 or 2-amino-5-bromo-3-nitropyridine 4 with sodium hydroxide solution and an aluminum nickel alloy, and by catalytic reduction of 2-amino-5-bromo-3-nitropyridine.4 Animation of... [Pg.89]

Although most patch testing is done with nickel sulfate because it is less irritating than nickel chloride, exposure of the skin to nickel alloys results in the release of nickel chloride from the influence of human sweat. Therefore, nickel chloride is the more relevant form of nickel for examining threshold concentrations (Menne 1994). Menne and Calvin (1993) examined skin reactions to various concentrations of nickel chloride in 51 sensitive and 16 nonsensitive individuals. Although inflammatory reactions in the sweat ducts and hair follicles were observed at 0.01% and lower, positive reactions to nickel were not observed. To be scored as a positive reaction, the test area had to have both redness and infiltration, while the appearance of vesicles and/or a bullous reaction were scored as a more severe reaction. At 0.1%, 4/51 and 1/51 tested positive with and without 4% sodium lauryl sulfate. Menne et al. (1987) examined the reactivity to different nickel alloys in 173 nickel-sensitive individuals. With one exception (Inconel 600), alloys that released nickel into synthetic sweat at a rate of <0.5 pg/cmVweek showed weak reactivity, while alloys that released nickel at a rate of >1 pg/cm /week produced strong reactions. [Pg.98]

Nickel is used throughout industry because of its excellent corrosion resistance. In addition to itr+us37- oe/oe" nn< cladding material to provide corrosion resistance to tanks and production vessel surfaces, nickel is used as an alloying element in steel production. Nickel is resistant to attack by NaOH and other alkali solutions, but is not compatible with ammonium hydroxide. Nickel is resistant to corrosion by sodium chloride solutions, but is corroded severely by iron, copper- and mercury chloride salts. Also, nickel has excellent corrosion resistance to most organic acids. Some of the common nickel alloys are described below ... [Pg.228]

Zinc—Cobalt. Alloys of Zn—Co usually contain 0.3—0.8% cobalt. Higher cobalt alloys, from 4—8%, have shown better salt spray resistance (156), but the commonly plated alloy is 0.3—0.8%. One automotive company specifies 0.3—1.0%. Cobalt is expensive, and economics favor the lower alloys. Costs have been quoted for zinc—cobalt at 1.2 times the cost of chloride zinc, with zinc—nickel alloys at 1.5—1.6 times the chloride zinc. Deposits can be very bright, but the improved corrosion resistance advantage requires yellow or bronze chromates. Alkaline baths give fewer problems in plating components with lapped, spot-welded seams. [Pg.165]

This present paper discusses in more detail three separate nuclear-related studies where surface analysis has been used extensively borosilicate glass leaching, surface chloride contamination, and gas phase oxidation of some nickel alloys. [Pg.348]

Other Systems. Evidence for dealloying has been reported in austenitic stainless steel and iron-nickel alloys in acidified chloride-containing solutions, reduction of titanium dioxide in molten calcium chloride, and copper-zinc-aluminum alloy pellets in NaOH solutions to produce Raney metal particles. (Corcoran)5... [Pg.374]


See other pages where Nickel alloys chloride is mentioned: [Pg.139]    [Pg.5]    [Pg.417]    [Pg.477]    [Pg.902]    [Pg.581]    [Pg.1089]    [Pg.447]    [Pg.135]    [Pg.209]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.447]    [Pg.34]    [Pg.418]    [Pg.642]    [Pg.162]    [Pg.165]    [Pg.216]    [Pg.2316]    [Pg.417]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Alloying nickel

Nickel alloys lithium chloride

Nickel alloys rubidium chloride

Nickel chloride

© 2024 chempedia.info