Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neurotransmitters structure

In addition to the posts)maptic receptors, dopamine autoreceptors also exist on the nerve terminals, dendrites and cell bodies. Experimental studies have shown that stimulation of the autoreceptors in the somatodendritic region of the neuron slows the firing rate of the dopaminergic neuron while stimulation of the autoreceptors on the nerve terminal inhibits both the release and the synthesis of the neurotransmitter. Structurally, the autoreceptor appears to be of the D2 type. While several experimental compounds have been developed that show a high affinity for the autoreceptors, to date there is no convincing evidence for their therapeutic efficacy. [Pg.47]

In an effort to overcome some of these difficulties and to provide the beginnings of a rational approach to the design of hormone analogs, we have utilized conformational and topographical restriction of peptide hormone and neurotransmitter structures. In this approach, we have attempted to make use where possible of classical structure-function studies, to Interpret the results from these studies In terms of specific conformational parameters which may be Involved In the observed rela-... [Pg.11]

Fig. 16.1. Examples of neurotransmitters. Structures are shown for important neurotransmitters in vertebrates. Fig. 16.1. Examples of neurotransmitters. Structures are shown for important neurotransmitters in vertebrates.
The chemistry of the brain and central nervous system is affected by a group of substances called neurotransmitters, substances that carry messages across a synapse from one neuron to another Several of these neurotransmitters arise from l tyrosine by structural modification and decarboxylation as outlined m Figure 27 5... [Pg.1126]

Neurons have three parts the cell body and dendrites, the axon, and axon terminals. The cell body contains the nucleus and the organelles needed for metabolism, growth, and repair. The dendrites are branched extensions of the cell body membrane. The axon is a long, thin structure which transfers electrical impulses down to the terminals. The axon divides into numerous axon terminals and it is in this specialized region that neurotransmitters are released to transmit information from one neuron to its neighbors. The synapse has been defined as the space between two subsequent interrelated neurons. ... [Pg.291]

AKAPs are a diverse family of about 75 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins to cellular compartments and thereby limit and integrate cellular signalling processes at specific sites. This compartmentalization of signalling by AKAPs contributes to the specificity of a cellular response to a given external stimulus (e.g. a particular hormone or neurotransmitter). [Pg.1]

GABA (y-aminobutyric acid) is an amino acid with mostly inhibitory functions in the mammalian central nervous system. Structures involved in releasing or binding GABA as a neurotransmitter constitute the GABAergic system. The GABAergic system is involved... [Pg.515]

In 1954, experiments by Olds and Milner revealed that the brain has specialized centers for reward functions. In these studies electrical stimulation of certain brain sites was found to be highly rewarding in the sense that rats operantly respond for electrical stimulation of these brain sites, often to the exclusion of any other activity. A neurotransmitter system that is particularly sensitive to electrical self-stimulation is the mesolimbic dopamine projection that originates in the ventral tegmental area and projects to structures closely... [Pg.757]

Muscarinic acetylcholine receptors (mAChRs) form a class of cell surface receptors that are activated upon binding of the neurotransmitter, acetylcholine. Structurally and functionally, mAChRs are prototypical members of the superfamily of G protein-coupled receptors. Following acetylcholine binding, the activated mAChRs interact with distinct classes of heterotrimeric G proteins resulting in the activation or inhibition of distinct downstream signaling cascades. [Pg.794]

The neurotransmitter acetylcholine (ACh) exerts its diverse pharmacological actions via binding to and subsequent activation of two general classes of cell surface receptors, the nicotinic and the mAChRs. These two classes of ACh receptors have distinct structural and functional properties. The nicotinic receptors,... [Pg.794]

Cocaine and desipramine inhibit the reuptake of monoamine neurotransmitters whereas amphetamine, which is a phenylalkylamine - similar in structure to the catecholamines, see Fig. 4 - competes for uptake and more importantly, evokes efflux of the monoamine neurotransmitters. All of them exert antidepressant effects. Cocaine and amphetamine are addictive whereas tricyclic antidepressants and their modern successors are not. The corollaty of the addictive properties is interference with DAT activity. Blockade of DAT by cocaine or efflux elicited by amphetamine produces a psychostimulant effect despite the different mechanisms even the experienced individual can hardly discern their actions. Because of the risk associated with inhibiting DAT mediated dopamine clearance the antidepressant effects of psychostimulants has not been exploited. [Pg.841]

Reuptake transporters are structures within the cell membranes of the presynaptic nerve terminal that serve to transport biogenic amines released from vesicles back into the nerve cell. These structures are targets for antidepressants, which block the transporter, thus increasing the bioavailability of neurotransmitters at postsynaptic receptors. [Pg.1079]

Trace amines are a family of endogenous monoamine compounds including (3-phenylethylamine (PEA), p-tyramine (TYR), tryptamine (TRP) and octopamine (OCT). The trace amines share close structural similarity with the well known classical monoamine neurotransmitters such as dopamine (DA), norepinephrine (NE) and serotonin (5-HT). As their name suggests, trace amines occur in comparably much lower abundance than monoamine neurotransmitters. For historical reasons, other endogenous amine compounds which might share some structural similarities with PEA, TYR, TRP or OCT are not referred to as trace amines. [Pg.1218]

The amphetamine-like properties of trace amines are best described for PEA which shares close structural similarity to amphetamine and can displace monoamine neurotransmitters from synaptic vesicles and trigger their release into the synaptic cleft by acting on the dopamine transporter. However, this effect is only observed at high, supra-physiological PEA concentrations and thus might not occur under physiological conditions. [Pg.1220]

Tryptamine itself is found in all major centers of the brain. Its physiologic role in central nervous system (CNS) function, however, remains unclear. 5-Hydroxytryptamine (5-HT, serotonin) is an important neurotransmitter in the CNS. The structural similarity of the tryptamine-related hallucinogens with 5-HT presumably forms the neurochemical basis for their action within the CNS. [Pg.213]

Acetylcholinesterase is a component of the postsynaptic membrane of cholinergic synapses of the nervous system in both vertebrates and invertebrates. Its structure and function has been described in Chapter 10, Section 10.2.4. Its essential role in the postsynaptic membrane is hydrolysis of the neurotransmitter acetylcholine in order to terminate the stimulation of nicotinic and muscarinic receptors (Figure 16.2). Thus, inhibitors of the enzyme cause a buildup of acetylcholine in the synaptic cleft and consequent overstimulation of the receptors, leading to depolarization of the postsynaptic membrane and synaptic block. [Pg.299]

Important products derived from amino acids include heme, purines, pyrimidines, hormones, neurotransmitters, and biologically active peptides. In addition, many proteins contain amino acids that have been modified for a specific function such as binding calcium or as intermediates that serve to stabilize proteins—generally structural proteins—by subsequent covalent cross-hnk-ing. The amino acid residues in those proteins serve as precursors for these modified residues. Small peptides or peptide-like molecules not synthesized on ribosomes fulfill specific functions in cells. Histamine plays a central role in many allergic reactions. Neurotransmitters derived from amino acids include y-aminobutyrate, 5-hydroxytryptamine (serotonin), dopamine, norepinephrine, and epinephrine. Many drugs used to treat neurologic and psychiatric conditions affect the metabolism of these neurotransmitters. [Pg.264]

A glance at the structure of the classical neurotransmitters (Fig. 1.1) shows that apart from the peptides (D) (and purines, E), most of them are fairly simple chemicals. Some authors therefore divide them into small (e.g. A, B, C) and large (peptides, D) molecular NTs. Although we will see that peptides certainly have some properties different from other NTs, in that they rarely have a primary neurotransmitter function and usually just complement the actions of those NTs in groups A-C, to put them in a class of their own and group all the others together simply on the basis of molecular size is inappropriate and misleading since it elevates the peptides to a status that is neither proven nor warranted. [Pg.6]

Figure 1.1 The chemical structures of the main neurotransmitters. The relatively simple structure of acetylcholine, the monoamines and the amino acids contrasts with that of the peptides, the simplest of which are the enkephalins which consists of five amino acids substance P has eleven... Figure 1.1 The chemical structures of the main neurotransmitters. The relatively simple structure of acetylcholine, the monoamines and the amino acids contrasts with that of the peptides, the simplest of which are the enkephalins which consists of five amino acids substance P has eleven...
Other ion channels are closed at rest, but may be opened by a change in membrane potential, by intracellular messengers such as Ca + ions, or by neurotransmitters. These are responsible for the active signalling properties of nerve cells and are discussed below (see Hille 1992, for a comprehensive account). A large number of ion channels have now been cloned. This chapter concerns function, rather than structure, and hence does not systematically follow the structural classification. [Pg.35]

The aim of this chapter is to consider the structure, distribution and functional properties of neurotransmitter receptors in the brain in general and discuss the principles of how the action of drugs at these receptors can be studied. (See relevant Chapters for detail of individual NT receptors.)... [Pg.57]

Today we know not only that there is more than one type of receptor for each neurotransmitter, but we also know a great deal about the structural basis for the differences between receptor subtypes which are due to differences in the amino-acid sequence of the proteins which make up the receptor. How do we know this ... [Pg.59]

It is often valuable to classify receptors according to their mechanism of action, because this is intimately related to structure. The neurotransmitter receptors in the brain are of two main types classified according to their structure and mechanism of action ... [Pg.59]

The following sections of this chapter will consider some general and comparative aspects of receptor structure and function. More detailed material on these topics may be found in the relevant chapters on individual neurotransmitters. [Pg.62]

Neurotransmitter receptors have evolved as one of the key components in the ability of the central nervous system to coordinate the behaviour of the whole animal, to process and respond to sensory input, and to adapt to change in the environment. These same receptors are therefore ideal targets for drug action because of their central role in the activity of the nervous system. A rational approach to the development of new therapeutic strategies involving the action of drugs at receptors in the nervous system is based on knowledge of receptor structure, distribution and function. [Pg.75]


See other pages where Neurotransmitters structure is mentioned: [Pg.449]    [Pg.704]    [Pg.709]    [Pg.808]    [Pg.6]    [Pg.55]    [Pg.28]    [Pg.460]    [Pg.484]    [Pg.553]    [Pg.553]    [Pg.842]    [Pg.870]    [Pg.870]    [Pg.914]    [Pg.915]    [Pg.1120]    [Pg.116]    [Pg.12]    [Pg.186]    [Pg.101]    [Pg.42]    [Pg.57]   
See also in sourсe #XX -- [ Pg.66 ]

See also in sourсe #XX -- [ Pg.323 ]




SEARCH



© 2024 chempedia.info