Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds monoamine

Antidepressants are used in the treatment of neuropathic pain and headache. They include the classic tricyclic compounds and are divided into nonselective nor-adrenaline/5-HT reuptake inhibitors (e.g., amitriptyline, imipramine, clomipramine, venlafaxine), preferential noradrenaline reuptake inhibitors (e.g., desipramine, nortriptyline) and selective 5-HT reuptake inhibitors (e.g., citalopram, paroxetine, fluoxetine). The reuptake block leads to a stimulation of endogenous monoaminer-gic pain inhibition in the spinal cord and brain. In addition, tricyclics have NMDA receptor antagonist, endogenous opioid enhancing, Na+ channel blocking, and K+ channel opening effects which can suppress peripheral and central sensitization. Block of cardiac ion channels by tricyclics can lead to life-threatening arrhythmias. The selective 5-HT transporter inhibitors have a different side effect profile and are safer in cases of overdose [3]. [Pg.77]

Monoamine Oxidases and their Inhibitors. Figure 2 Structures of MAO inhibitors. In the top row, the structural similarity between selegiline/L-deprenyl and methamphetamine is shown. Below are the aminoindan series of propargylamine compounds such as rasagiline. Next, the bifunctional MAO and cholinesterase inhibitors (ladostigil) and lastly, the iron chelator-MAO inhibitors. [Pg.785]

Trace amines are a family of endogenous monoamine compounds including (3-phenylethylamine (PEA), p-tyramine (TYR), tryptamine (TRP) and octopamine (OCT). The trace amines share close structural similarity with the well known classical monoamine neurotransmitters such as dopamine (DA), norepinephrine (NE) and serotonin (5-HT). As their name suggests, trace amines occur in comparably much lower abundance than monoamine neurotransmitters. For historical reasons, other endogenous amine compounds which might share some structural similarities with PEA, TYR, TRP or OCT are not referred to as trace amines. [Pg.1218]

Recently Turner and coworkers have sought to extend the deracemization method beyond a-amino acids to encompass chiral amines. Chiral amines are increasingly important building blocks for pharmaceutical compounds that are either in clinical development or currently licensed for use as drugs (Figure 5.7). At the outset of this work, it was known that type II monoamine oxidases were able to catalyze the oxidation of simple amines to imines in an analogous fashion to amino acid oxidases. However, monoamine oxidases generally possess narrow substrate specificity and moreover have been only documented to catalyze the oxidation of simple, nonchiral... [Pg.119]

All TCAs are either secondary- or tertiary-amines of a dibenzazepine nucleus (Fig. 20.3), and they all inhibit neuronal reuptake of noradrenaline and/or 5-HT but are much less potent as dopamine reuptake blockers. A common claim is that secondary amines (e.g. desipramine) are preferential inhibitors of noradrenaline uptake whereas the tertiary derivatives (e.g. imipramine, doxepin and amitryptyline) preferentially inhibit 5-HT uptake. However, when Richelson and Pfenning (1984) actually compared the effects of a wide range of antidepressants on the synaptosomal uptake of [ H]monoamines in vitro, and compared their A s, instead of merely ranking /C50S collected from different studies, they found that tertiary- and secondary-substituted compounds were equi-potent inhibitors of [ H]noradrenaline uptake. Moreover, all the TCAs turned out to be more potent inhibitors of [ H]noradrenaline than of [ H]5-HT uptake. Tertiary amines are even less convincing inhibitors of 5-HT reuptake in vivo, because any such action is diminished by their metabolism to secondary amines (e.g. imipramine to desipramine amitriptyline to nortriptyline). Only clomipramine retains any appreciable 5-HT uptake blocking activity in vivo with (an unimpressive) five-fold selectivity for 5-HT versus noradrenaline. [Pg.436]

The adverse side-effects of the TCAs, coupled with their toxicity in overdose, provoked a search for compounds which retained their monoamine uptake blocking activity but which lacked the side-effects arising from interactions with Hj, aj-adreno-ceptors and muscarinic receptors. One of the first compounds to emerge from this effort was iprindole, which has an indole nucleus (Fig. 20.3). This turned out to be an interesting compound because it has no apparent effects on monoamine uptake and is not a MAO inhibitor. This, together with its relatively minor antimuscarinic effects, led to it commonly being described as an atypical antidepressant. Mechanisms that could underlie its therapeutic actions have still not been identified but, in any case, this drug has now been withdrawn in the UK. [Pg.438]

One of these compounds, venlafaxine (licensed in the UK in 1996), is regarded as an inhibitor of both 5-HT and noradrenaline reuptake but this is based on its actions in vitro. At low doses in vivo, it is a more potent inhibitor of 5-HT (Ki 39 nM) than noradrenaline reuptake (K 210 nM). Moreover, its active metabolite, O-demethylven-lafaxine, is a weaker inhibitor of NA reuptake, and has a longer half-life, than its parent compound. However, at high doses, venlafaxine inhibits reuptake of both these monoamines but has negligible activity at muscarinic, Hi-receptors or ai-adrenoceptors and... [Pg.441]

Ultimately, agonist drugs that directly activate monoamine receptors would appear to be a logical development in this field. Unfortunately, the peripheral side-effects of such compounds could well limit their acceptability even if we were to discover what subset of receptors to target. [Pg.443]

The neurotoxic effects of all these compounds are antagonized by inhibitors of monoamine uptake (table 1), implicating the membrane uptake carrier on serotonin and dopamine neurons in the mechanism of neurotoxicity. In this regard, these amphetamines are like a drug somewhat related in structure, namely l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), a Parkinsonism-causing neurotoxic dmg that has been studied intensely since 1983 (Langston and Irwin 1986). In the case of MPTP, the mechanism by which inhibitors of the dopamine uptake carrier block the neurotoxicity toward dopamine neurons (mainly nigrostriatal dopamine neurons) seems clear. A metabolite of MPTP, l-methyl-4-phenylpyridinium (MPP-I-), has been shown to be a substrate for the dopamine uptake carrier (Javitch et al. 1985). Thus accumulation of MPP-I-, formed metabolically from... [Pg.343]

The assessment of clearance is complicated by the numerous mechanisms by which compounds may be cleared from the body. These mechanisms include oxidative metabolism, most commonly by CYP enzymes, but also in some cases by other enzymes including but not limited to monoamine oxidases (MAO), flavin-containing monooxygenases (FMO), and aldehyde oxidase [45, 46], Non-oxidative metabolism such as conjugation or hydrolysis may be effected by enzymes such as glucuronyl transferases (UGT), glutathione transferases (GST), amidases, esterases, or ketone reductases, as well as other enzymes [47, 48], In addition to metabolic pathways, parent compound may be excreted directly via passive or active transport processes, most commonly into the urine or bile. [Pg.155]

Two rather broad structural classes account for the large majority of drugs that have proven useful in the clinic for treating depression. Each of these has associated with it some clearly recognized side effects the monoamine oxidase inhibitors, most commonly derivatives of hydrazine, tend to have undesirable effects on blood pressure the tricyclic compounds on the other hand may cause undesirable changes in the heart. Considerable effort has thus been expended toward the development of antidepressants that fall outside those structural classes. An unstated assumption in this work is the belief that very different structures will be associated with a novel mechanism of action and a different set of ancillary activities. One such compound, trazodone... [Pg.472]

Table 7.1 Profile of MDMA and Related Compounds as Monoamine Transporter Substrates... Table 7.1 Profile of MDMA and Related Compounds as Monoamine Transporter Substrates...
A second, more extensive experiment involved oral administration of three daily doses (100 mg/kg) of parachlorophenylalanine (PCPA). This tryptophan hydroxylase inhibitor (47), like reserpine, enhanced the behavioral effects of LSD (13) moreover, hypersensitivity occurred when 5-HT, but not other monoamine, concentrations were below normal in both forebrain and hindbrain (13). That is, effects were observed at 5 and 12 days (when 5-HT was depleted to 10-20% and 60-70% of normal) but not at 21 days (when 5-HT had returned to normal). Control experiments (13) indicated that (a) the interaction of PCPA, 5-HT, and LSD was probably not caused by generalized hyperactivity or hyperirritability sometimes seen after PCPA (73) (b) PCPA does not affect threshold doses of other psychoactive but nonserotonergic compounds, such as d-amphetamine (0.3 mg/kg) and (c) pretreatment with a-methylparatyrosine, a tyrosine hydroxylase inhibitor which depletes catecholamines rather than indoleamines, does not alter sensitivity to LSD. [Pg.171]

No importance of metabolic processes to the mechanism of action has yet been demonstrated. The phenethylamines generally are not good inhibitors of monoamine oxidase (MAO), although more active compounds may not be good substrates for this enzyme (MAO) (36). However, no extensive studies of phenethylamines have been reported, as either inhibitors or substrates of MAO. For... [Pg.187]

With most psychedelics, their activity can probably be considerably enhanced by prior (or possibly concomitant) use of a monoamine oxidase inhibitor (e.g., isocarboxazid (Marplan), nialamide (Niamid), phenelzine (Nardil), and tranylcypromine (Parnate)). Some compounds (e.g., DMT) which have no oral activity, can probably become orally active. These compounds are often prescribed as antidepressants, but it is not a good idea to use them frequently or in large doses. For antidotes to the hallucinogens see Amer. J. Hosp. Pharm. 30,80(1973). [Pg.22]


See other pages where Compounds monoamine is mentioned: [Pg.94]    [Pg.94]    [Pg.100]    [Pg.383]    [Pg.438]    [Pg.228]    [Pg.465]    [Pg.356]    [Pg.704]    [Pg.75]    [Pg.163]    [Pg.1219]    [Pg.186]    [Pg.4]    [Pg.90]    [Pg.187]    [Pg.438]    [Pg.443]    [Pg.443]    [Pg.94]    [Pg.231]    [Pg.234]    [Pg.104]    [Pg.266]    [Pg.1219]    [Pg.31]    [Pg.98]    [Pg.54]    [Pg.56]    [Pg.449]    [Pg.189]    [Pg.60]    [Pg.126]    [Pg.16]    [Pg.17]    [Pg.452]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



© 2024 chempedia.info