Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicomponent systems techniques

Distillation Columns. Distillation is by far the most common separation technique in the chemical process industries. Tray and packed columns are employed as strippers, absorbers, and their combinations in a wide range of diverse appHcations. Although the components to be separated and distillation equipment may be different, the mathematical model of the material and energy balances and of the vapor—Hquid equiUbria are similar and equally appHcable to all distillation operations. Computation of multicomponent systems are extremely complex. Computers, right from their eadiest avadabihties, have been used for making plate-to-plate calculations. [Pg.78]

There are many types of phase diagrams in addition to the two cases presented here these are summarized in detail by Zief and Wilcox (op. cit., p. 21). Solid-liquid phase equilibria must be determined experimentally for most binaiy and multicomponent systems. Predictive methods are based mostly on ideal phase behavior and have limited accuracy near eutectics. A predic tive technique based on extracting liquid-phase activity coefficients from vapor-liquid equilib-... [Pg.1990]

Renon s techniques valuable for the complexities of multicomponent systems and in particular the solution by digital computer. [Pg.12]

These processes are very rapid and allow the preparation of inorganic supports in one step. This technique allows large-scale manufacturing of supports such as titania, fumed silica, and aluminas. Sometimes the properties of the material differ from the conventional preparation routes and make this approach unique. Multicomponent systems can be also prepared, either by multimetallic solutions or by using a two-nozzle system fed with monometallic solutions [22]. The as-prepared powder can be directly deposited onto substrates, and the process is termed combustion chemical vapor deposition [23]. [Pg.122]

The ability of differential pulse polarography to resolve multicomponent systems and evaluate concentrations with excellent sensitivity has made this technique an attractive candidate for simultaneous measurement of CO, O, and some inhalation anesthetics Though very preliminary, the results appear promising and will likely lead to more intensive investigation of the approach. [Pg.55]

Although NMR spectrometers of operating frequencies > 400 MHz are cosdy and require specialist technical support staff, the technique provides a broad picture of the chemical modifications arising from the reactions of free radicals or related oxidants in complex, multicomponent systems such as intact biofluids, tissue sample... [Pg.13]

Another very important technique for fundamental consideration of multicomponent systems is low energy ion scattering (LEIS) [Taglauer and Heiland, 1980 Brongersma et al., 2007]. This is a unique tool in surface analysis, since it provides the ability to define the atomic composition of the topmost surface layer under UHV conditions. The signal does not interfere with the subsurface atomic layers, and therefore the results of LEIS analysis represent exclusively the response from the outer surface. In LEIS, a surface is used as a target that scatters a noble gas ion beam (He, Ne, ... [Pg.250]

Figure 8.5 shows the LEIS spectra of ZnAl204 and ZnO as a characteristic example of a multicomponent system analyzed by this technique [Brongersma and Jacobs, 1994]. Since only the surface peaks of A1 and O were detected for ZnAl204, the Zn atoms must be located in the subsurface layers. The onset of the tail agrees between the spectra, indicating that Zn is present in the second and deeper layers. This example illustrates the strength of the LEIS technique, in that characteristic peaks from different elements can be used to selectively analyze the atomic composition of the topmost surface. In addition, the shape of the tails could provide information on the in-depth distribution of the elements. [Pg.251]

In principle, any type of sample can be analysed by SEC provided that it can be solubilised and that there are no enthalpic interactions between sample and packing material. By definition then, this technique cannot be carried out on vulcanisates and even unvulcanised fully compounded rubber samples can present problems due to filler-rubber interactions. The primary use of SEC is to determine the whole MWD of polymers and the various averages (number, viscosity, weight, z-average) based on a calibration curve and to allow qualitative comparisons of different samples. Many commercial polymers have a broad MWD leading to strong peak overlap in the chromatography of complex multicomponent systems. [Pg.261]

For pharmaceutical formulations, the simplex method was used by Shek et al. [10] to search for an optimum capsule formula. This report also describes the necessary techniques of reflection, expansion, and contraction for the appropriate geometric figures. The same laboratories applied this method to study a solubility problem involving butoconazole nitrate in a multicomponent system [11],... [Pg.611]

For a multicomponent system, a simple technique to yield conservative results is as follows. Combine a light key component and all lighter components, and a heavy key component and all heavier components into two groups to get XF, XD, XB. For the key groups, use the a of the keys themselves. [Pg.106]

While the main driving force in [43, 44] was to avoid direct particle transfers, Escobedo and de Pablo [38] designed a pseudo-NPT method to avoid direct volume fluctuations which may be inefficient for polymeric systems, especially on lattices. Escobedo [45] extended the concept for bubble-point and dew-point calculations in a pseudo-Gibbs method and proposed extensions of the Gibbs-Duhem integration techniques for tracing coexistence lines in multicomponent systems [46]. [Pg.361]

Fowle and Fein (1999) measured the sorption of Cd, Cu, and Pb by B. subtilis and B. licheniformis using the batch technique with single or mixed metals and one or both bacterial species. The sorption parameters estimated from the model were in excellent agreement with those measured experimentally, indicating that chemical equilibrium modeling of aqueous metal sorption by bacterial surfaces could accurately predict the distribution of metals in complex multicomponent systems. Fein and Delea (1999) also tested the applicability of a chemical equilibrium approach to describing aqueous and surface complexation reactions in a Cd-EDTA-Z . subtilis system. The experimental values were consistent with those derived from chemical modeling. [Pg.83]

A reactive transport model in a more general sense treats a multicomponent system in which a number of equilibrium and perhaps kinetic reactions occur at the same time. This problem requires more specialized solution techniques, a variety of which have been proposed and implemented (e.g., Yeh and Tripathi, 1989 Steefel and MacQuarrie, 1996). Of the techniques, the operator splitting method is best known and most commonly used. [Pg.306]

As is usually the case in the study of complicated reactions that involve a great many different species, more attention has been given to the analysis of reaction products and intermediates than to the problems of the investigation of the kinetics of possible elementary reaction steps. Analytical studies of the systems have been advanced by the development of techniques such as gas chromatography for the analysis of multicomponent systems and mass spectrometry for the detection of free radicals and other highly unstable species. Furthermore, since most... [Pg.36]

Thermoanalytical methods essentially encompass such techniques that are based entirely on the concept of heating a sample followed by well-defned modified procedures, such as gravimetric analysis, differential analysis and titrimetric analysis. In usual practice, data are generated as a result of continuously recorded curves that may be considered as thermal spectra . These thermal spectra also termed as thermograms, often characterize a single or multicomponent system in terms of ... [Pg.193]

Solution chemistry remains attractive as an inexpensive technique useful for processing ceramics, fibers or coatings, even on a large scale not possible with evaporation techniques. However, the application of these solution techniques to multicomponent systems has rarely been attempted. A better basic understanding of all reaction steps from the solution to the ceramic is needed before a real improvement in the process will be possible. [Pg.306]

The discovery of unusual physical or chemical properties in multicomponent systems demands the isolation and chemical and physical characterization of the single component which is responsible for the observed effect. In many instances the resulting search is less than systematic and depends more on serendipity than on careful experimentation. As an example, many of the early attempts to discover the compound responsible for superconducting transition temperatures in the 90K range were sometimes haphazard when viewed in terms of synthetic techniques. [Pg.450]

In many studies the chemisorption and the surface reaction is just the first step in a series of solid state reactions that take place as atoms from the surface move into the bulk. Corrosion, oxide, carbide and other compound formations are generally initiated at the surface and then propagate into the bulk. There may be a concentration gradient of certain constituents at the surface in a multicomponent system that would influence the mechanical or chemical properties of the system. Hardening of materials and other forms of passivation treatment frequently involve introduction of certain substances only in the near surface region. For the investigation of these problems RHEED is a powerful technique. [Pg.32]

The objective of this review is to characterize the excimer formation and energy migration processes in aryl vinyl polymers sufficiently well that the excimer probe may be used quantitatively to study polymer structure. One such area of application in which some measure of success has already been achieved is in the analysis of the thermodynamics of multicomponent systems and the kinetics of phase separation. In the future, it is likely that the technique will also prove fruitful in the study of structural order in liquid crystalline polymers. [Pg.31]

The extension of vector-algebraic techniques to multicomponent systems of higher dimensionality (degrees of freedom /> 2) can be carried out straightforwardly, even though one loses the convenience of mutually complementary pairs (X, X ) and orthogonal complementary conjugates (X, x ) that are a special feature of /= 2. In a space of / dimensions, a... [Pg.405]

For a system with no kinetic or adsorption complications, the forward transition time x decreases while xr increases until finally x = xr in the limit, at steady state. (Because the convergence rate is slow, equality of x and xr is not commonly achieved experimentally before the onset of natural convection and nonplanar diffusion effects.) Quantitative treatments for single component systems, multicomponent systems, stepwise reactions, and systems involving chemical kinetics have been derived. The technique has not been used extensively. [Pg.137]

A number of nonionic, anionic and cationic monomers has been used to copolymerize DADMAC in binary or multicomponent systems by various techniques. These monomers are listed in Table 7. In relation few systems have the mechanism and kinetics of the polymerization process been investigated [1]. Interest has been primarily directed toward new products or properties, with the data mostly in patents. [Pg.148]

Thermal diffusion, also known as the Ludwig-Soret effect [1, 2], is the occurrence of mass transport driven by a temperature gradient in a multicomponent system. While the effect has been known since the last century, the investigation of the Ludwig-Soret effect in polymeric systems dates back to only the middle of this century, where Debye and Bueche employed a Clusius-Dickel thermogravi-tational column for polymer fractionation [3]. Langhammer [4] and recently Ecenarro [5, 6] utilized the same experimental technique, in which separation results from the interplay between thermal diffusion and convection. This results in a rather complicated experimental situation, which has been analyzed in detail by Tyrrell [7]. [Pg.4]

Recently a fairly inexpensive way of high-temperature experimentation has been found to investigate refractory sulfides and related multicomponent systems up to temperatures of nearly 2000 °C using resistance furnaces. These techniques are discussed below and applied to some sulfide systems, in particular of those metals which belong to the VI-B group. The binary systems chromium-sulfur, molybdenum-sulfur, tungsten-sulfur, as well as some other ternary and quaternary systems and their reactions are reviewed and completed within the limits of the new experimental procedure. [Pg.108]


See other pages where Multicomponent systems techniques is mentioned: [Pg.521]    [Pg.1]    [Pg.501]    [Pg.258]    [Pg.603]    [Pg.63]    [Pg.9]    [Pg.201]    [Pg.61]    [Pg.335]    [Pg.190]    [Pg.9]    [Pg.117]    [Pg.65]    [Pg.111]    [Pg.28]    [Pg.185]    [Pg.186]    [Pg.148]    [Pg.228]    [Pg.16]    [Pg.108]    [Pg.118]   
See also in sourсe #XX -- [ Pg.318 , Pg.319 ]




SEARCH



Systems multicomponent

© 2024 chempedia.info