Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1 monoxide sulfides

The effect of trace contaminants on the reaction has been investigated carefully. All uncondensed effiuent gases were recycled to the reactor, except for the amounts present in the streams taken off for analysis or flashed upon depressuring of the organic phase. Aqueous phase from the separator containing the water soluble by-products has been used as the water feed to the reactor. Hydrogen chloride containing chlorinated hydrocarbons and acetylene was used in all operations. In addition, certain possible impurities were tested for their effect on the kinetics and selectivity of the process. Paraffins, carbon monoxide, sulfide, carbon dioxide, alkali, and alkaline earth metals were found to be chemically inert. Olefins, diolefins and acetylenic compounds are chlorinated to the expected products. No deleterious effects of by-product recycle were observed even when some of the main by-products were added extraneously. [Pg.173]

Many organometallic compounds owe their stability to soft-soft interactions. Zerovalent heavy metals are soft acceptors therefore, they are usually bonded to soft ligands such as olefins, isonitriles, carbon monoxide, sulfides, and phosphines. [Pg.18]

The chemiluminescence-redox detector (CRD) is based on specific redox reactions coupled with chemiluminescence measurement. An attractive feature of this detector is that it responds to compounds such as ammonia, hydrogen sulfide, carbon disulfide, and sulfur dioxide. Hydrogen peroxide, hydrogen, carbon monoxide, sulfides, and thiols that are not sensitively detected by flame ionization detection can be detected with the CRD detector. Compounds that typically constitute a large portion of the matrix of many industrial samples are not detected, thus simplifying matrix effects and sample cleanup procedures for some applications. [Pg.379]

Iron Sulfur Compounds. Many molecular compounds (18—20) are known in which iron is tetrahedraHy coordinated by a combination of thiolate and sulfide donors. Of the 10 or more stmcturaHy characterized classes of Fe—S compounds, the four shown in Figure 1 are known to occur in proteins. The mononuclear iron site REPLACE occurs in the one-iron bacterial electron-transfer protein mbredoxin. The [2Fe—2S] (10) and [4Fe—4S] (12) cubane stmctures are found in the 2-, 4-, and 8-iron ferredoxins, which are also electron-transfer proteins. The [3Fe—4S] voided cubane stmcture (11) has been found in some ferredoxins and in the inactive form of aconitase, the enzyme which catalyzes the stereospecific hydration—rehydration of citrate to isocitrate in the Krebs cycle. In addition, enzymes are known that contain either other types of iron sulfur clusters or iron sulfur clusters that include other metals. Examples include nitrogenase, which reduces N2 to NH at a MoFe Sg homocitrate cluster carbon monoxide dehydrogenase, which assembles acetyl-coenzyme A (acetyl-CoA) at a FeNiS site and hydrogenases, which catalyze the reversible reduction of protons to hydrogen gas. [Pg.442]

Nickel [7440-02-0] Ni, recognized as an element as early as 1754 (1), was not isolated until 1820 (2). It was mined from arsenic sulfide mineral deposits (3) and first used in an alloy called German Silver (4). Soon after, nickel was used as an anode in solutions of nickel sulfate [7786-81 A] NiSO, and nickel chloride [7718-54-9] NiCl, to electroplate jewelry. Nickel carbonyl [13463-39-3] Ni(C02)4, was discovered in 1890 (see Carbonyls). This material, distilled as a hquid, decomposes into carbon monoxide and pure nickel powder, a method used in nickel refining (5) (see Nickel and nickel alloys). [Pg.9]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

Silver sulfate decomposes above 1085°C into silver, sulfur dioxide, and oxygen. This property is utilized ia the separation of silver from sulfide ores by direct oxidation. Silver sulfate is reduced to silver metal by hydrogen, carbon, carbon monoxide, zinc, and copper. [Pg.90]

Ladle metallurgy, the treatment of Hquid steel in the ladle, is a field in which several new processes, or new combinations of old processes, continue to be developed (19,20). The objectives often include one or more of the following on a given heat more efficient methods for alloy additions and control of final chemistry improved temperature and composition homogenisation inclusion flotation desulfurization and dephosphorization sulfide and oxide shape control and vacuum degassing, especially for hydrogen and carbon monoxide to make interstitial-free (IF) steels. Electric arcs are normally used to raise the temperature of the Hquid metal (ladle arc furnace). [Pg.380]

Chemica.1 Properties. Reviews of carbonyl sulfide chemistry are available (18,23,24). Carbonyl sulfide is a stable compound and can be stored under pressure ia steel cylinders as compressed gas ia equiUbrium with Hquid. At ca 600°C carbonyl sulfide disproportionates to carbon dioxide and carbon disulfide at ca 900°C it dissociates to carbon monoxide and sulfur. It bums with a blue flame to carbon dioxide and sulfur dioxide. Carbonyl sulfide reacts... [Pg.129]

When the Claus reaction is carried out in aqueous solution, the chemistry is complex and involves polythionic acid intermediates (105,211). A modification of the Claus process (by Shell) uses hydrogen or a mixture of hydrogen and carbon monoxide to reduce sulfur dioxide, carbonyl sulfide, carbon disulfide, and sulfur mixtures that occur in Claus process off-gases to hydrogen sulfide over a cobalt molybdate catalyst at ca 300°C (230). [Pg.144]

Reduction of sulfur dioxide by methane is the basis of an Allied process for converting by-product sulfur dioxide to sulfur (232). The reaction is carried out in the gas phase over a catalyst. Reduction of sulfur dioxide to sulfur by carbon in the form of coal has been developed as the Resox process (233). The reduction, which is conducted at 550—800°C, appears to be promoted by the simultaneous reaction of the coal with steam. The reduction of sulfur dioxide by carbon monoxide tends to give carbonyl sulfide [463-58-1] rather than sulfur over cobalt molybdate, but special catalysts, eg, lanthanum titanate, have the abiUty to direct the reaction toward producing sulfur (234). [Pg.144]

Carbonyl sulfide and carbon monoxide [630-08-0] can also form under certain conditions. [Pg.27]

Potential Processes. Sulfur vapor reacts with other hydrocarbon gases, such as acetjiene [74-86-2] (94) or ethylene [74-85-1] (95), to form carbon disulfide. Higher hydrocarbons can produce mercaptan, sulfide, and thiophene intermediates along with carbon disulfide, and the quantity of intermediates increases if insufficient sulfur is added (96). Light gas oil was reported to be successflil on a semiworks scale (97). In the reaction with hydrocarbons or carbon, pyrites can be the sulfur source. With methane and iron pyrite the reaction products are carbon disulfide, hydrogen sulfide, and iron or iron sulfide. Pyrite can be reduced with carbon monoxide to produce carbon disulfide. [Pg.30]

Hydrogen sulfide and carbon react at 900°C to give a 70% yield of carbon disulfide (102,103). A process for reaction of coke and hydrogen sulfide or sulfur in an electric-resistance-heated fluidized bed has been demonstrated on a laboratory scale (104). Hydrogen sulfide also forms carbon disulfide in reactions with carbon monoxide at 600—1125°C (105) or carbon dioxide at 350—450°C in the presence of catalysts (106). [Pg.31]

With hydrogen sulfide at 500—600°C, monochlorotoluenes form the corresponding thiophenol derivatives (30). In the presence of palladium catalysts and carbon monoxide, monochlorotoluenes undergo carbonylation at 150—300°C and 0.1—20 MPa (1—200 atm) to give carboxyHc acids (31). Oxidative coupling of -chlorotoluene to form 4,4 -dimethylbiphenyl can be achieved in the presence of an organonickel catalyst, generated in situ, and zinc in dipolar aprotic solvents such as dimethyl acetamide (32,33). An example is shown in equation 4. [Pg.53]

For example, carbon dioxide from air or ethene nitrogen oxides from nitrogen methanol from diethyl ether. In general, carbon dioxide, carbon monoxide, ammonia, hydrogen sulfide, mercaptans, ethane, ethene, acetylene (ethyne), propane and propylene are readily removed at 25°. In mixtures of gases, the more polar ones are preferentially adsorbed). [Pg.29]

A substantial portion of fhe gas and vapors emitted to the atmosphere in appreciable quantity from anthropogenic sources tends to be relatively simple in chemical structure carbon dioxide, carbon monoxide, sulfur dioxide, and nitric oxide from combustion processes hydrogen sulfide, ammonia, hydrogen chloride, and hydrogen fluoride from industrial processes. The solvents and gasoline fractions that evaporate are alkanes, alkenes, and aromatics with relatively simple structures. In addition, more complex... [Pg.44]


See other pages where 1 monoxide sulfides is mentioned: [Pg.113]    [Pg.1131]    [Pg.1131]    [Pg.1164]    [Pg.601]    [Pg.339]    [Pg.50]    [Pg.508]    [Pg.64]    [Pg.66]    [Pg.317]    [Pg.163]    [Pg.165]    [Pg.119]    [Pg.313]    [Pg.506]    [Pg.95]    [Pg.182]    [Pg.332]    [Pg.369]    [Pg.215]    [Pg.421]    [Pg.238]    [Pg.459]    [Pg.555]    [Pg.52]    [Pg.53]    [Pg.233]    [Pg.270]    [Pg.258]    [Pg.139]    [Pg.152]    [Pg.2254]    [Pg.2338]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



CH2OS Carbon monoxide-hydrogen sulfide

Hydrogen sulfide carbon monoxide

© 2024 chempedia.info