Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer units linear polymers

Sometimes the estimation of the electronic structures of polymer chains necessitates the inclusion of long-range interactions and intermolecular interactions in the chemical shift calculations. To do so, it is necessary to use a sophisticated theoretical method which can take account of the characteristics of polymers. In this context, the tight-binding molecular orbital(TB MO) theory from the field of solid state physics is used, in the same sense in which it is employed in the LCAO approximation in molecular quantum chemistry to describe the electronic structures of infinite polymers with a periodical structure -11,36). In a polymer chain with linearly bonded monomer units, the potential energy if an electron varies periodically along the chain. In such a system, the wave function vj/ (k) for electrons at a position r can be obtained from Bloch s theorem as follows(36,37) ... [Pg.35]

There is no general rule relating the nucleophilic reactivity of cyclic monomer and linear polymer repeating unit, it depends on the nature of heteroatom and the size of the ring which affects the electronic structure of heteroatom. It is a common practice to estimate the order of nucleophilicities on the basis of basicities. Although it is only partly justified, this procedure enables semiquantitative comparisons of known pKa values whereas no universal scale of nucleophilicity exists. Some typical values of pKa for cyclic compounds and their linear analogs are given in Table 8 [99,100],... [Pg.479]

With copolymers, it is not sufficient merely to describe the empirical formula to characterize the molecule. Another question that can be asked concerns the distribution of the different kinds of repeat units in the molecule. Starting from monomers A and B, the following distribution patterns are obtained in linear polymers ... [Pg.12]

The physical properties of any polyisoprene depend not only on the microstmctural features but also on macro features such as molecular weight, crystallinity, linearity or branching of the polymer chains, and degree of cross-linking. For a polymer to be capable of crystallization, it must have long sequences where the stmcture is completely stereoregular. These stereoregular sequences must be linear stmctures composed exclusively of 1,4-, 1,2-, or 3,4-isoprene units. If the units are 1,4- then they must be either all cis or all trans. If 1,2- or 3,4- units are involved, they must be either syndiotactic or isotactic. In all cases, the monomer units must be linked in the head-to-tail manner (85). [Pg.467]

Plant stmctural material is the polysaccharide cellulose, which is a linear P (1 — 4) linked polymer. Some stmctural polysaccharides iacorporate nitrogen iato thek molecular stmcture an example is chitin, the material which comprises the hard exoskeletons of kisects and cmstaceans. Chitki is a cellulose derivative whereki the OH at C-2 is replaced by an acetylated amino group (—NHCOCH ). Microbial polysaccharides, of which the capsular or extracellular (exopolysaccharides) are probably the most important class, show more diversity both ki monomer units and the nature of thek linkages. [Pg.95]

Elastomers are a special sort of cross-linked polymer. First, they are really linear polymers with just a few cross-links - one every hundred or more monomer units - so that a molecule with a DP of 500 might have fewer than five cross-link points along its length. And second, the polymer has a glass temperature which is well below room temperature, so that (at room temperature) the secondary bonds have melted. Why these two features give an elastomer is explained later (Chapter 23). [Pg.232]

The monomer, norbomene (or bicyclo[2.2.l]hept-2-ene), is produced by the Diels-Alder addition of ethylene to cyclopentadiene. The monomer is polymerised by a ring-opening mechanism to give a linear polymer with a repeat unit containing both an in-chain five-membered ring and a double bond. Both cis-and trans- structures are obtainable according to the choice of catalyst used ... [Pg.306]

Addition polymerization is employed primarily with substituted or unsuhstituted olefins and conjugated diolefins. Addition polymerization initiators are free radicals, anions, cations, and coordination compounds. In addition polymerization, a chain grows simply hy adding monomer molecules to a propagating chain. The first step is to add a free radical, a cationic or an anionic initiator (I ) to the monomer. For example, in ethylene polymerization (with a special catalyst), the chain grows hy attaching the ethylene units one after another until the polymer terminates. This type of addition produces a linear polymer ... [Pg.304]

Another definition, taking into account polymerization conversion, has been more recently proposed.192 Perfect dendrimers present only terminal- and dendritic-type units and therefore have DB = 1, while linear polymers have DB = 0. Linear units do not contribute to branching and can be considered as structural defects present in hyperbranched polymers but not in dendrimers. For most hyperbranched polymers, nuclear magnetic resonance (NMR) spectroscopy determinations lead to DB values close to 0.5, that is, close to the theoretical value for randomly branched polymers. Slow monomer addition193 194 or polycondensations with nonequal reactivity of functional groups195 have been reported to yield polymers with higher DBs (0.6-0.66 range). [Pg.57]

Anionic polymerizations carried out in aprotic solvents with an efficient initiator may lead to molecular weight control (Mn is determined by the monomer to initiator mole ratio) and low polydispersity indices. The chains are linear and the monomer units are placed head-to-tail. Such polymers are commonly used as calibration samples and for investigation of structure-properties relationships. [Pg.154]

The reason for the low intrinsic viscosities in solution is that dendrimers exist as tightly packed balls. This is by contrast with linear polymers, which tend to form flexible coils. The effect of this difference is that, whereas polymer solutions tend to be of high viscosity, dendrimer solutions are of very low viscosity. In fact, as dendrimers are prepared, their intrinsic viscosity increases as far as the addition of the fourth monomer unit to growing branches (the so-called fourth generation), but this is the maximum value that the viscosity reaches, and as the side chains grow beyond that, the viscosity decreases. [Pg.131]

Hyperbranched polymers are generally composed of branched (dendritic), Hn-ear, and terminal units. In contrast to AB2 systems, there are two different types of linear units in SCVP one resembles a repeat unit of a polycondensate (----A -b----) and one a monomer unit of a vinyl polymer (--a(B )---). [Pg.11]

The structural units represent residues from the monomeric com-pound(s) employed in the preparation of the polymer. Usually, there is a direct correspondence between the monomer(s) and the structural unit(s). Several illustrative examples of units occurring in linear polymers are listed on the following page ... [Pg.30]

The polymers listed above, and all other linear polymers as well, are formed from monomers which enter into two, and only two, linkages with other structural units. This statement corresponds to the previous remark that the structural units of linear polymers necessarily are bivalent. The interlinking capacity of a monomer ordinarily is apparent from its structure it is clearly prescribed by the presence of two condensable functional groups in each monomer in the third and fourth examples above. The ability of the extra electron pair of the ethylenic linkage to enter into the formation of two bonds endows styrene with the same interlinking capacity. In accordance with the functionality concept introduced by Carothers, all monomers which when polymerized may join with two, and only two, other monomers are termed bifunctional. Similarly, a hifunctional unit is one which is attached to two other units. It follows that linear polymers are composed exclusively (aside from terminal units) of bifunctional units. ... [Pg.31]

The process proceeds through the reaction of pairs of functional groups which combine to yield the urethane interunit linkage. From the standpoint of both the mechanism and the structure type produced, inclusion of this example with the condensation class clearly is desirable. Later in this chapter other examples will be cited of polymers formed by processes which must be regarded as addition polymerizations, but which possess within the polymer chain recurrent functional groups susceptible to hydrolysis. This situation arises most frequently where a cyclic compound consisting of one or more structural units may be converted to a polymer which is nominally identical with one obtained by intermolecular condensation of a bifunctional monomer e.g., lactide may be converted to a linear polymer... [Pg.39]

The chemical and physical properties of the polymers obtained by these alternate methods are identical, except insofar as they are affected by differences in molecular weight. In order to avoid the confusion which would result if classification of the products were to be based on the method of synthesis actually employed in each case, it has been proposed that the substance be referred to as a condensation polymer in such instances, irrespective of whether a condensation or an addition polymerization process was used in its preparation. The cyclic compound is after all a condensation product of one or more bifunctional compounds, and in this sense the linear polymer obtained from the cyclic intermediate can be regarded as the polymeric derivative of the bifunctional monomer(s). Furthermore, each of the polymers listed in Table III may be degraded to bifunctional monomers differing in composition from the structural unit, although such degradation of polyethylene oxide and the polythioether may be difficult. Apart from the demands of any particular definition, it is clearly desirable to include all of these substances among the condensation... [Pg.57]

The principles set forth above account reasonably well for the course of bifunctional condensations under ordinary conditions and for the relative difficulty of ring formation with units of less than five or more than seven members. They do not explain the formation of cyclic monomers from five-atom units to the total exclusion of linear polymers. Thus 7-hydroxy acids condense exclusively to lactones such as I, 7-amino acids give the lactams II, succinic acid yields the cyclic anhydride III, and ethylene carbonate and ethylene formal occur only in the cyclic forms IV and V. [Pg.99]

Bifunctional monomers capable of forming six- or seven-membered rings condense variably, depending upon the particular monomer. The products normally obtained in the absence of diluent in various representative bifunctional condensations are listed in Table IX for unit lengths of six and seven members. The term interconvertibility refers to the reversible transformation between the ring and the linear polymer. Several of the six-membered units (Table IX) prefer the ring form exclusively, but most of them yield both products, or at any rate the ring and chain products are readily interconvertible. Seven-membered units either yield linear polymers exclusively, or, if the cyclic monomer is formed under ordinary conditions, it is convertible to the linear polymer. [Pg.101]

Cyclosilazanes are found to be reluctant to polymerize by the ring-opening process, probably for thermodynamic reasons. On the other hand, six- and eight-membered silazoxane rings are able to undergo anionic polymerization under similar conditions to those which have been widely used for cyclosiloxane polymerization provided there is no more than two silazane units in the cyclic monomer. They can also copolymerize with cyclosiloxanes however, the chain length of the linear polymer formed is substantially decreased with increasing proportion of silazane units. [Pg.177]

Type 2 gels are essentially infinite molecular weight molecules Their three-dimensional macroscopic networks comprise structural components that are covalently linked through multifunctional units. This is a very broad class that includes linear polymers that have been chemically or radiochemically cross-linked into a permanent structure as well as networks that have been built up by the step or chain polymerization of difunctional and multifunctional monomers. [Pg.486]

The hydroxylic content of the dextran sugar backbone makes the polymer very hydrophilic and easily modified for coupling to other molecules. Unlike PEG, discussed previously, which has modifiable groups only at the ends of each linear polymer, the hydroxyl functional groups of dextran are present on each monomer in the chain. The monomers contain at least 3 hydroxyls (4 on the terminal units) that may undergo derivatization reactions. This multivalent nature of dextran allows molecules to be attached at numerous sites along the polymer chain. [Pg.951]


See other pages where Monomer units linear polymers is mentioned: [Pg.5]    [Pg.1175]    [Pg.2189]    [Pg.9]    [Pg.223]    [Pg.359]    [Pg.430]    [Pg.251]    [Pg.476]    [Pg.487]    [Pg.231]    [Pg.245]    [Pg.563]    [Pg.284]    [Pg.66]    [Pg.460]    [Pg.901]    [Pg.7]    [Pg.65]    [Pg.140]    [Pg.221]    [Pg.34]    [Pg.35]    [Pg.122]    [Pg.89]    [Pg.132]    [Pg.18]    [Pg.142]    [Pg.13]   
See also in sourсe #XX -- [ Pg.10 , Pg.11 ]




SEARCH



Monomer unit

Monomers linear

Polymers linearity

Polymers monomer units

Polymers monomers

Polymers units

© 2024 chempedia.info