Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular sieve compounds

Molecular sieve compounds are a class of crystalline solids which because of their porous nature have wide uses for catalytic and adsorption processes. The size and shape of these pore openings range from small six ring channels which will only adsorb water to 18-ring channels which are 1.2nm across. The determination of the framework topology which yields both the pore size and shape is critical for-... [Pg.162]

Regarding their use as cracking and isomerization catalysts, bulk oxides such as clays and amorphous silica-aluminas have been widely displaced by molecular sieve compounds (e.g., zeolites, aluminophosphates), whose well-defined pore structures generally offer higher selectivity and flexibility. Nevertheless, bulk oxides continue to be used for various cracking and isomerization applications in the petroleum industry. [Pg.196]

This approach is not limited to liquids, and solid-phase adsorbents may be used for selective removal of components from gas streams. In cases in which molecular sieve compounds are used, the separated components may be studied following thermal desorption of the adsorbed component(s). A variant of this approach can be used for the analysis of particulates or dust in gas streams (or in the environment). In this case, the sample is drawn through a suitable membrane. Membranes made from materials such as PVC have sufficiently good infrared transmission so that separated components may be measured directly on the filter material. Membrane separations may also be applied to liquid systems. One convenient approach is to use a porous silver membrane and to measure any separated components (particulates or other insoluble matter) retained on the surface of the membrane directly via a reflection measurement. [Pg.84]

Schunk S A and Schuth F 1998 Synthesis of zeolite-like inorganic compounds Molecular Sieves Science and Technology vo 1, ed H G Karge and J Weitkamp (Berlin Springer) pp 229-63... [Pg.2792]

The carbonylation of some alkyl halides such as iodocyclohexane (911) can be carried out under neutral conditions in the presence of N,N,N.N-tetre,-methylurea (TMU), which is a neutral compound, but catches generated hydrogen halide. Molecular sieves (MS-4A) are used for the same pur-pose[768]. Very reactive ethyl 3-iodobutyrate (912) is carbonylated to give ethyl methylsuccinate (913) in the presence of TMU. The expected elimination of HI to form crotonate, followed by carbonylation, does not occur. [Pg.262]

See Adsorption, LIQUID separation Aluminum compounds, aluminum oxide (alumina) Carbon, activated carbon Ion exchange Molecular sieves Silicon... [Pg.251]

Physical Properties. Physical properties of importance include particle size, density, volume fraction of intraparticle and extraparticle voids when packed into adsorbent beds, strength, attrition resistance, and dustiness. These properties can be varied intentionally to tailor adsorbents to specific apphcations (See Adsorption liquid separation Aluminum compounds, aluminum oxide (alumna) Carbon, activated carbon Ion exchange Molecular sieves and Silicon compounds, synthetic inorganic silicates). [Pg.278]

OtherApphca.tlons. Many appHcations of adsorption involving radioactive compounds simply parallel similar appHcations involving the same compounds in nonradio active forms, eg, radioactive carbon-14, or deuterium- or tritium-containing versions of CO2, H2O, hydrocarbons. For example, molecular sieve 2eohtes are commonly employed for these separations, just as for the corresponding nonradio active uses. [Pg.285]

Sohd sorbent materials have the abiUty to adsorb water vapor until an equiUbrium condition is attained. The total weight of water that can be adsorbed in a particular material is a function of the temperature of the material and of the relative humidity of the air (see Adsorption). To regenerate the sorbent, its temperature must be raised or the relative humidity lowered. The sohd sorbents most commonly used are siUca (qv), alumina (see Aluminum compounds), and molecular sieves (qv). [Pg.362]

Highly pure / -hexane can be produced by adsorption on molecular sieves (qv) (see Adsorption, liquid separation) (43). The pores admit normal paraffins but exclude isoparaffins, cycloparaffins, and aromatics. The normal paraffins are recovered by changing the temperature and/or pressure of the system or by elution with a Hquid that can be easily separated from / -hexane by distillation. Other than ben2ene, commercial hexanes also may contain small concentrations of olefins (qv) and compounds of sulfur, oxygen, and chlorine. These compounds caimot be tolerated in some chemical and solvent appHcations. In such cases, the commercial hexanes must be purified by hydrogenation. [Pg.405]

Molecular Sieve Treatment. Molecular sieve treaters can be designed to remove H2S, organic sulfur compounds (including carbonyl sulfide), and water in one step. SoHd-bed units are utilized and regeneration occurs in the same manner as simple, soHd-bed dehydrators. [Pg.185]

Sulfur Compounds. Various gas streams are treated by molecular sieves to remove sulfur contaminants. In the desulfurization of wellhead natural gas, the unit is designed to remove sulfur compounds selectively, but not carbon dioxide, which would occur in Hquid scmbbing processes. Molecular sieve treatment offers advantages over Hquid scmbbing processes in reduced equipment size because the acid gas load is smaller in production economics because there is no gas shrinkage (leaving CO2 in the residue gas) and in the fact that the gas is also fliUy dehydrated, alleviating the need for downstream dehydration. [Pg.456]

A large use of molecular sieves ia the natural gas industry is LPG sweetening, in which H2S and other sulfur compounds are removed. Sweetening and dehydration are combined in one unit and the problem associated with the disposal of caustic wastes from Hquid treating systems is eliminated. The regeneration medium is typically natural gas. Commercial plants are processing from as Htde as ca 30 m /d (200 bbl/d) to over 8000 m /d (50,000 bbl/d). [Pg.457]

The purity of oxygen from chlorate candles before and after gas filtration is indicated in Table 2. A particulate filter is always used. Filter chemicals are HopcaUte, which oxidizes CO to CO2 molecular sieves (qv), which remove chlorine compounds and basic materials, eg, soda lime, which removes CO2 and chlorine compounds. Other than H2O and N2, impurity levels of <1 ppm can be attained. Moisture can be reduced by using a desiccant (see Desiccants). Gas purity is a function of candle packaging as well as composition. A hotter burning unit, eg, one in which steel wool is the binder, generates more impurities. [Pg.485]

Cobalt salts are used as activators for catalysts, fuel cells (qv), and batteries. Thermal decomposition of cobalt oxalate is used in the production of cobalt powder. Cobalt compounds have been used as selective absorbers for oxygen, in electrostatographic toners, as fluoridating agents, and in molecular sieves. Cobalt ethyUiexanoate and cobalt naphthenate are used as accelerators with methyl ethyl ketone peroxide for the room temperature cure of polyester resins. [Pg.382]

Because of their selectivity, molecular sieves offer advantages over silica gel, alumina or activated charcoal, especially in their very high affinity for water, polar molecules and unsaturated organic compounds. Their relative efficiency is greatest when the impurity to be removed is present at low concentrations. Thus, at 25° and a relative humidity of 2%, type 5A molecular sieves adsorb 18% by weight of water, whereas for silica gel and alumina the figures are 3.5 and 2.5% respectively. Even at 100° and a relative humidity of 1.3% molecular sieves adsorb about 15% by weight of water. [Pg.29]

Ketones are more stable to oxidation than aldehydes and can be purified from oxidisable impurities by refluxing with potassium permanganate until the colour persists, followed by shaking with sodium carbonate (to remove acidic impurities) and distilling. Traces of water can be removed with type 4A Linde molecular sieves. Ketones which are solids can be purified by crystallisation from alcohol, toluene, or petroleum ether, and are usually sufficiently volatile for sublimation in vacuum. Ketones can be further purified via their bisulfite, semicarbazone or oxime derivatives (vide supra). The bisulfite addition compounds are formed only by aldehydes and methyl ketones but they are readily hydrolysed in dilute acid or alkali. [Pg.67]

Rapid procedure Dry over anhydrous K2CO3 for 24h, followed by further drying for 24h over 3A molecular sieves or boric anhydride, followed by distn. Alternatively, stir over P2O5 (5% w/v) for 24h then distil. However this last method is not suitable for use in reactions with very acid sensitive compounds. [Pg.86]

Molecular sieves (dehydrated zeolite) purify petroleum products with their strong affinity for polar compounds such as water, carbon dioxide, hydrogen sulfide, and mercaptans. The petroleum product is passed through the sieve until the impurity is sufficiently removed after which the sieve may be regenerated by heating to 400 - bOO F. [Pg.293]

Molecular sieves are available with a variety of pore sizes. A molecular sieve should be selected with a pore size that will admit H2S and water while preventing heavy hydrocarbons and aromatic compound.s from entering the pores. However, carbon dioxide molecules are about the same size as H2S molecules and present problems. Even thougli die COi is non-polar and will not bond to the active sites, the CO2 will entci the pores. Small quantities of CO2 will become trapped in the pores In this way small portions of CO2 are removed. More importantly, CO ih obstruct the access of H2S and water to active sites and decrease the eflectiveness ot the pores. Beds must be sized to remove all water and to pi ovitte for interference from other molecules in order to remove all H i.S. [Pg.161]

Quinoxaline 1,4-dioxides have also been prepared by condensation reactions carried out on the surface of solid catalysts such as silica gel, " molecular sieves, " or alumina. " As a representative example, " BFO 1 and the P-dicarbonyl compound 16 were combined with silica gel in methanol. The excess methanol was removed by evaporation and the silica gel with adsorbed reagents was allowed to stand for two weeks without drying. The quinoxaline 1,4-dioxide 17 was obtained in 90% yield after elution from a silica gel column. [Pg.506]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

A five-column configuration of Such an analyser system is depicted in Figure 14.6. The first event in the process is the analysis of Hj by injection of the contents of sample loop 2 (SL2) onto column 5 (a packed molecular sieve column). Hydrogen is separated from the other compounds and detected by TCD 2, where nitrogen is used as a carrier gas. The next event is the injection of the contents of sample loop 1 (SLl), which is in series with SL2, onto column 1. After the separation of compounds up to and including C5, and backflushing the contents of column 1, all compounds above C5 (Q+) are detected by TCDl. The fraction up to and including C5 is directed to column 2, where air, CO, COj, Cj, and 2= (ethene) are separated from... [Pg.384]

The use of heterogeneous catalysts in the liquid phase offers several advantages compared with homogeneous counterparts, in that it facilitates ease of recovery and recyclidg. A chro-miiun-containingmediiun-pore molecular sieve fSi Cr> 140 1, CrS-2, efficiently catalyzes the direct oxidadon of various primary amines to the corresponclmg nitro compounds using 70% r-butylhy operoxide (TBHP. ... [Pg.20]


See other pages where Molecular sieve compounds is mentioned: [Pg.74]    [Pg.74]    [Pg.2789]    [Pg.196]    [Pg.251]    [Pg.252]    [Pg.282]    [Pg.283]    [Pg.75]    [Pg.449]    [Pg.104]    [Pg.173]    [Pg.513]    [Pg.1542]    [Pg.1543]    [Pg.66]    [Pg.84]    [Pg.145]    [Pg.179]    [Pg.347]    [Pg.490]    [Pg.153]    [Pg.289]    [Pg.162]    [Pg.182]    [Pg.624]    [Pg.78]   


SEARCH



Molecular compounds

Molecular sieves

Molecular sieving

© 2024 chempedia.info