Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular activation

Temperature The degree of molecular activity in a body high activity gives a high temperature, low activity a low temperature. The degree of activity is based on the assumption that absolute zero has no molecular movement at all. The following are some specific temperatures ... [Pg.1480]

The turnover number of an enzyme, is a measure of its maximal catalytic activity, is defined as the number of substrate molecules converted into product per enzyme molecule per unit time when the enzyme is saturated with substrate. The turnover number is also referred to as the molecular activity of the enzyme. For the simple Michaelis-Menten reaction (14.9) under conditions of initial velocity measurements, Provided the concentration of... [Pg.438]

Dynamic equilibria occur frequently in chemical systems. Chemical processes reach a state of equilibrium if allowed to continue for a sufficient time. Nevertheless, molecular activity always goes on after equilibrium has been reached. The following example, illustrated schematically in Figure 2-9. should help you grasp this important idea. [Pg.73]

In an ideal pure preparation of Na,K-ATPase from outer renal medulla, the al subunit forms 65 70% of the total protein and the molar ratio of a to is 1 1, corresponding to a mass ratio of about 3 1 [1,5]. Functionally the preparation should be fully active in the sense that each a/ unit binds ATP, Pj, cations and the inhibitors vanadate and ouabain. The molecular activity should be close to a maximum value of 7 000-8 000 Pj/min. The highest reported binding capacities for ATP and phosphate are in the range 5-6 nmol/mg protein and close to one ligand per otjS unit [29], when fractions with maximum specific activities of Na,K-ATPase [40 50 pmo Pj/min mg protein) are selected for assay. [Pg.3]

When combined with the isolation and reactivity studies of the patterned aminosilica (7), the increased activity of the patterned catalysts provide further evidence that the patterning technique developed allows for the synthesis of aminosilicas which behave like isolated, single-site materials (although a true single site nature has not been proven). As the olefin polymerization catalysts supported by the patterned materials show a marked improvement over those materials supported on traditional aminosilicas, these patterned materials should be able to improve supported small molecular catalysis as well. Future improvements in catalysis with immobilized molecular active sites could be realized if this methodology is adopted to prepare new catalysts with isolated, well-defined, single-site active centers. [Pg.277]

In the IPCM calculations, the molecule is contained inside a cavity within the polarizable continuum, the size of which is determined by a suitable computed isodensity surface. The size of this cavity corresponds to the molecular volume allowing a simple, yet effective evaluation of the molecular activation volume, which is not based on semi-empirical models, but also does not allow a direct comparison with experimental data as the second solvation sphere is almost completely absent. The volume difference between the precursor complex Be(H20)4(H20)]2+ and the transition structure [Be(H20)5]2+, viz., —4.5A3, represents the activation volume of the reaction. This value can be compared with the value of —6.1 A3 calculated for the corresponding water exchange reaction around Li+, for which we concluded the operation of a limiting associative mechanism. In the present case, both the nature of [Be(H20)5]2+ and the activation volume clearly indicate the operation of an associative interchange mechanism (156). [Pg.536]

Selectivity in catalytic oxidation/reduction and acid-base reactions has been a long-term challenge in the catalysis field. While it has been recognized that the control of molecular activation and reaction intermediates is critical in achieving high selectivity, this issue has not been adequately addressed and is a serious challenge to the field. [Pg.229]

Absolute zero. Minus 273°C or minus 460 or 0°K or Kelvin, the scale used in theoretical physics and chemistry. Absolute zero is the theoretical temperature at which all molecular activity ceases. In practical terms, the lowest reachable temperature is about 1°K. [Pg.385]

Attempts have also been made to exploit the relatively high molecular activity of cod trypsin at low temperatures by incorporating the enzyme into herring "fermentations that proceed at 10°C. The preparation of brine-fermented round herring (matjes) is limited to certain seasons because of the balance of digestive enzymes in the fish at this time. Other studies have indicated that proteinases are important components in matje fermentation 41),... [Pg.71]

But remember that in an earUer chapter it was noted that there is an analogy between the immune system and NP metaboUsm. Both are mechanisms evolved to generate chemical diversity to overcome the low probability of any one product having appropriate bio molecular activity. [Pg.233]

Rehberg, E., B. Kelder, E.G. Hoal, and S. Pestka, Specific molecular activities of recombinant and hybrid leukocyte interferons. J Biol Chem, 1982. 257(19) 11497-502. [Pg.174]

Once a chemical is in systemic circulation, the next concern is how rapidly it is cleared from the body. Under the assumption of steady-state exposure, the clearance rate drives the steady-state concentration in the blood and other tissues, which in turn will help determine what types of specific molecular activity can be expected. Chemicals are processed through the liver, where a variety of biotransformation reactions occur, for instance, making the chemical more water soluble or tagging it for active transport. The chemical can then be actively or passively partitioned for excretion based largely on the physicochemical properties of the parent compound and the resulting metabolites. Whole animal pharmacokinetic studies can be carried out to determine partitioning, metabolic fate, and routes and extent of excretion, but these studies are extremely laborious and expensive, and are often difficult to extrapolate to humans. To complement these studies, and in some cases to replace them, physiologically based pharmacokinetic (PBPK) models can be constructed [32, 33]. These are typically compartment-based models that are parameterized for particular... [Pg.25]

Nevertheless the fact that nitrogen pentoxide in presence of nitrogen peroxide is decomposed by blue light, and indeed, the whole of photochemistry, shows that there is nothing impossible in principle about the radiation theory, and examples in which infra-red radiation plays some part in molecular activation may yet be discovered. [Pg.146]

Here Et is the total enzyme, namely, the free enzyme E plus enzyme-substrate complex ES. The equation holds only at substrate saturation, that is, when the substrate concentration is high enough that essentially all of the enzyme has been converted into the intermediate ES. The process is first order in enzyme but is zero order in substrate. The rate constant k is a measure of the speed at which the enzyme operates. When the concentration [E]t is given in moles per liter of active sites (actual molar concentration multiplied by the number of active sites per mole) the constant k is known as the turnover number, the molecular activity, or kcat. The symbol fccat is also used in place of k in Eq. 9-6 for complex rate expressions in which fccat cannot represent a single rate constant but is an algebraic expression that contains a number of different constants. [Pg.457]

The action of catalase is very fast, almost 104 times faster than that of peroxidases. The molecular activity per catalytic center is about 2 x 105 s-1. [Pg.852]

Oxophenarsine 597s 5-Oxoproline, 551s, 662s Oxosteroid isomerase 526, 696 molecular activity 696 A5-3-Oxosteroid isomerase... [Pg.927]

The interesting suggestion has been made (61) that the unusually high molecular activity of extracellular /3-lactamases (Table II) may possibly compensate for the dilution of the secreted enzyme in the growth medium. [Pg.31]

Most of the properties of RNase Ti are summarized in Tables II and IV. It is a very acidic protein, active between pH 4 and 8.5 it is most active at pH 7.5 for RNA digestion (12) and at pH 7.2 for the hydrolysis of guanosine 2, 3 -cyclic phosphate (18). The purified enzyme possesses a specific activity of about 1.6 X 10 units/mg of protein. The molecular activity (standard units/jumole enzyme) has not been determined for the cleavage of a definite dinucleoside monophosphate such as GpC or for the hydrolysis of guanosine 2, 3 -cyclic phosphate. [Pg.213]


See other pages where Molecular activation is mentioned: [Pg.161]    [Pg.528]    [Pg.68]    [Pg.91]    [Pg.284]    [Pg.3]    [Pg.3]    [Pg.152]    [Pg.407]    [Pg.254]    [Pg.142]    [Pg.231]    [Pg.68]    [Pg.27]    [Pg.197]    [Pg.355]    [Pg.706]    [Pg.280]    [Pg.115]    [Pg.693]    [Pg.696]    [Pg.910]    [Pg.915]    [Pg.924]    [Pg.78]    [Pg.224]    [Pg.97]    [Pg.360]    [Pg.101]   


SEARCH



Molecular activity

© 2024 chempedia.info