Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Minima, characterization

The ELF is a scalar function of three variables, and in order to obtain more information from it, it is necessary to use a mathematical approach called differential topology analysis. This was first done by Silvi and Savin,11 and later on extended by them and co-workers.45,46 Unfortunately, one cannot visualize in a global way a three-dimensional function. Usually, one resorts to isosurfaces like the ones in Figure 1, or to contour maps. A three-dimensional function has a richer structure than a one-dimensional function, and their mathematical characterization introduces some new words which are necessary to understand in order to go further. It is the purpose of this section to explain this new terminology in a manner as simpler as possible. Let us begin with a one-dimensional (ID) example, a function f(x) like the one in Figure 3. The function has three maxima and two minima characterized by the sign of the second derivative. In three dimensions (3D) there are more possibilities, for there are nine second derivatives. Hence, one does not talk about maxima but about attractors. In ID, the attractors are points, in... [Pg.64]

The physicochemical forces between colloidal particles are described by the DLVO theory (DLVO refers to Deijaguin and Landau, and Verwey and Overbeek). This theory predicts the potential between spherical particles due to attractive London forces and repulsive forces due to electrical double layers. This potential can be attractive, or both repulsive and attractive. Two minima may be observed The primary minimum characterizes particles that are in close contact and are difficult to disperse, whereas the secondary minimum relates to looser dispersible particles. For more details, see Schowalter (1984). Undoubtedly, real cases may be far more complex Many particles may be present, particles are not always the same size, and particles are rarely spherical. However, the fundamental physics of the problem is similar. The incorporation of all these aspects into a simulation involving tens of thousands of aggregates is daunting and models have resorted to idealized descriptions. [Pg.163]

A doublet fragmentation was described by Chandrasekhar (74) as the diffusion of its droplets from the potential minimum, characterizing their attraction. The time scale for fliis process takes the form (75) ... [Pg.82]

What is the minimum characterization data needed to assess toxicity ... [Pg.111]

The careful analysis of the influence of the polymer molecular weights on the location of the phase diagram minimum (characterized by a temperature T. and a PS weight fraction w. ) is a way to corroborate this presumptive evidence. For this purpoWe a suitable method consists to pay attention to series of blends in which the molecular weight of one component is kept constant whereas that,M "(t),of the other... [Pg.601]

The conventional leaded premium gasoline is characterized by minimum RON and MON values of 97 and 86, respectively. In 1993, it was the principal product in the gasoline pool in France having 60% of the sales, but its share is diminishing and, in 2000, it will play mostly a minor role. [Pg.197]

Whatever the development of knowledge in the fields of chemical analysis and structure-property relationships, the characterization by determination of conventional properties of usage and other values related empirically to properties of usage will remain mandatory and unavoidable, as a minimum because it is required with regard to specifications. [Pg.486]

Minimum exposure times must be observed in order to reach the requisite S/N ratio. As per EN 1435 and EN 584-1, for the different ranges of utilization (energy, wall thickness), definite film elasses are prescribed. They are characterized by the minimum gradient-to-noise ratios. Based on this, one can calculate the minimum values for the S/N ratio based on the IP systems. The exposure time and the device parameter sensitivity and dynamics (latitude) must be adjusted accordingly, with an availability of an at least 12 bit system for the digitalization. [Pg.474]

Here a - surface tension pa - atmospheric pressure 9 - contact angle of crack s wall wetting by penetrant n - coefficient, characterizing residual filling of defect s hollow by a penetrant before developer s application IT and h - porosity and thickness of developer s layer respectively W - minimum width of crack s indication, which can be registered visually or with the use of special optical system. The peculiarity of the case Re < H is that the whole penetrant volume is extracted by a developer. As a result the whole penetrant s volume, which was trapped during the stage of penetrant application, imbibes developer s layer and forms an indication of a defect. [Pg.614]

This paper intends to give, through different examples, guide-lines for characterization of array probes. We discuss, particularly, beam pattern measurement methods and raise the question whether it is useful to achieve a full characterization of all beams steered by the probe or to limit the characterization to a minimum set of acoustic configurations. An automatic bench for full characterization of tube inspection probes is described. [Pg.819]

Many groups are now trying to fit frequency shift curves in order to understand the imaging mechanism, calculate the minimum tip-sample separation and obtain some chemical sensitivity (quantitative infonuation on the tip-sample interaction). The most conunon methods appear to be perturbation theory for considering the lever dynamics [103], and quantum mechanical simulations to characterize the tip-surface interactions [104]. Results indicate that the... [Pg.1697]

Techniques have been developed within the CASSCF method to characterize the critical points on the excited-state PES. Analytic first and second derivatives mean that minima and saddle points can be located using traditional energy optimization procedures. More importantly, intersections can also be located using constrained minimization [42,43]. Of particular interest for the mechanism of a reaction is the minimum energy path (MEP), defined as the line followed by a classical particle with zero kinetic energy [44-46]. Such paths can be calculated using intrinsic reaction coordinate (IRC) techniques... [Pg.253]

Information about critical points on the PES is useful in building up a picture of what is important in a particular reaction. In some cases, usually themially activated processes, it may even be enough to describe the mechanism behind a reaction. However, for many real systems dynamical effects will be important, and the MEP may be misleading. This is particularly true in non-adiabatic systems, where quantum mechanical effects play a large role. For example, the spread of energies in an excited wavepacket may mean that the system finds an intersection away from the minimum energy point, and crosses there. It is for this reason that molecular dynamics is also required for a full characterization of the system of interest. [Pg.254]

Figure 8 shows a one-dimensional sketch of a small fraction of that energy landscape (bold line) including one conformational substate (minimum) as well as, to the right, one out of the typically huge number of barriers separating this local minimum from other ones. Keeping this picture in mind the conformational dynamics of a protein can be characterized as jumps between these local minima. At the MD time scale below nanoseconds only very low barriers can be overcome, so that the studied protein remains in or close to its initial conformational substate and no predictions of slower conformational transitions can be made. [Pg.90]

Each combination of four atoms (A, B. C. and D) is characterized by two parameters, e and e.. As for the CICC, is a parameter that depends on atomic properties and on distances, and is calculated by Eq. (27), with r, again being the sum of bond lengths between atoms on the path with the minimum number of bond counts. However c is now a geometric parameter (dependent on the conformation)... [Pg.423]

Transition stale search algorithms rather climb up the potential energy surface, unlike geometry optimi/.ation routines where an energy minimum is searched for. The characterization of even a simple reaction potential surface may result in location of more than one transition structure, and is likely to require many more individual calculations than are necessary to obtain et nilibrinm geometries for either reactant or product. [Pg.17]

Characterize a potential energy surface for acertain niimberof atoms, i.e., detect all the local energy minima, the global minimum on the surface, and all the transition states between different minima. [Pg.65]

Calculated transition structures may be very sensitive to the level of theory employed. Semi-empirical methods, since they are parametrized for energy minimum structures, may be less appropriate for transition state searching than ab initio methods are. Transition structures are normally characterized by weak partial bonds, that is, being broken or formed. In these cases UHF calculations are necessary, and sometimes even the inclusion of electron correlation effects. [Pg.17]

Characterize a potential energy minimum. Ageometry optimization results in anew structure at a minimum. You can examine atomic coordinates and energy of this structure. [Pg.57]

The atoms and molecules at the interface between a Hquid (or soHd) and a vacuum are attracted more strongly toward the interior than toward the vacuum. The material parameter used to characterize this imbalance is the interfacial energy density y, usually called surface tension. It is highest for metals (<1 J/m ) (1 J/m = N/m), moderate for metal oxides (<0.1 J/m ), and lowest for hydrocarbons and fluorocarbons (0.02 J /m minimum) (4). The International Standards Organization describes weU-estabHshed methods for determining surface tension, eg, ISO 304 for Hquids containing surfactants and ISO 6889 for two-Hquid systems containing surfactants. [Pg.541]

If most of the particles are less than ca 0.6 cm in size, flow obstmctions can occur by physical, chemical, or electrical bonds between particles. This cohesiveness is characterized by the bulk material s flow function. The forces acting to overcome a cohesive arch and cause flow are described by a hopper s flow factor, which can be obtained from the design charts (see Fig. 7). The minimum opening size required to prevent a cohesive arch from forming can be calculated from the comparison of the flow factor and flow function. [Pg.556]

The secondary stmcture elements are then identified, and finally, the three-dimensional protein stmcture is obtained from the measured interproton distances and torsion angle parameters. This procedure requites a minimum of two days of nmr instmment time per sample, because two pulse delays are requited in the 3-D experiment. In addition, approximately 20 hours of computing time, using a supercomputer, is necessary for the calculations. Nevertheless, protein stmcture can be assigned using 3-D nmr and a resolution of 0.2 nanometers is achievable. The largest protein characterized by nmr at this writing contained 43 amino acid units (51). However, attempts ate underway to characterize the stmcture of interleukin 2 [85898-30-2] which has over 150 amino acid units. [Pg.396]


See other pages where Minima, characterization is mentioned: [Pg.440]    [Pg.89]    [Pg.67]    [Pg.78]    [Pg.197]    [Pg.220]    [Pg.128]    [Pg.66]    [Pg.8]    [Pg.435]    [Pg.841]    [Pg.62]    [Pg.781]    [Pg.883]    [Pg.1307]    [Pg.2658]    [Pg.166]    [Pg.303]    [Pg.114]    [Pg.171]    [Pg.1]    [Pg.543]    [Pg.547]    [Pg.522]    [Pg.220]    [Pg.270]    [Pg.36]    [Pg.196]    [Pg.151]    [Pg.397]   
See also in sourсe #XX -- [ Pg.243 , Pg.244 ]




SEARCH



© 2024 chempedia.info