Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effect quantum-mechanical

Actual crystal planes tend to be incomplete and imperfect in many ways. Nonequilibrium surface stresses may be relieved by surface imperfections such as overgrowths, incomplete planes, steps, and dislocations (see below) as illustrated in Fig. VII-5 [98, 99]. The distribution of such features depends on the past history of the material, including the presence of adsorbing impurities [100]. Finally, for sufficiently small crystals (1-10 nm in dimension), quantum-mechanical effects may alter various physical (e.g., optical) properties [101]. [Pg.272]

This chapter concentrates on describing molecular simulation methods which have a counectiou with the statistical mechanical description of condensed matter, and hence relate to theoretical approaches to understanding phenomena such as phase equilibria, rare events, and quantum mechanical effects. [Pg.2239]

In this section we look briefly at the problem of including quantum mechanical effects in computer simulations. We shall only examine tire simplest technique, which exploits an isomorphism between a quantum system of atoms and a classical system of ring polymers, each of which represents a path integral of the kind discussed in [193]. For more details on work in this area, see [22, 194] and particularly [195, 196, 197]. [Pg.2272]

Information about critical points on the PES is useful in building up a picture of what is important in a particular reaction. In some cases, usually themially activated processes, it may even be enough to describe the mechanism behind a reaction. However, for many real systems dynamical effects will be important, and the MEP may be misleading. This is particularly true in non-adiabatic systems, where quantum mechanical effects play a large role. For example, the spread of energies in an excited wavepacket may mean that the system finds an intersection away from the minimum energy point, and crosses there. It is for this reason that molecular dynamics is also required for a full characterization of the system of interest. [Pg.254]

The physical properties of argon, krypton, and xenon are frequendy selected as standard substances to which the properties of other substances are compared. Examples are the dipole moments, nonspherical shapes, quantum mechanical effects, etc. The principle of corresponding states asserts that the reduced properties of all substances are similar. The reduced properties are dimensionless ratios such as the ratio of a material s temperature to its critical... [Pg.6]

The reason for the formation of a lattice can be the isotropic repulsive force between the atoms in some simple models for the crystalhzation of metals, where the densely packed structure has the lowest free energy. Alternatively, directed bonds often arise in organic materials or semiconductors, allowing for more complicated lattice structures. Ultimately, quantum-mechanical effects are responsible for the arrangements of atoms in the regular arrays of a crystal. [Pg.854]

The molecular mechanics calculations discussed so far have been concerned with predictions of the possible equilibrium geometries of molecules in vacuo and at OK. Because of the classical treatment, there is no zero-point energy (which is a pure quantum-mechanical effect), and so the molecules are completely at rest at 0 K. There are therefore two problems that I have carefully avoided. First of all, I have not treated dynamical processes. Neither have I mentioned the effect of temperature, and for that matter, how do molecules know the temperature Secondly, very few scientists are interested in isolated molecules in the gas phase. Chemical reactions usually take place in solution and so we should ask how to tackle the solvent. We will pick up these problems in future chapters. [Pg.57]

Quantum mechanical effects in inorganic and bioinorganic electron transfer. T. Guarr and G. McLendon, Coord. Chem. Rev., 1985, 68,1 (227). [Pg.67]

In the previous chapter we considered a rather simple solvent model, treating each solvent molecule as a Langevin-type dipole. Although this model represents the key solvent effects, it is important to examine more realistic models that include explicitly all the solvent atoms. In principle, we should adopt a model where both the solvent and the solute atoms are treated quantum mechanically. Such a model, however, is entirely impractical for studying large molecules in solution. Furthermore, we are interested here in the effect of the solvent on the solute potential surface and not in quantum mechanical effects of the pure solvent. Fortunately, the contributions to the Born-Oppenheimer potential surface that describe the solvent-solvent and solute-solvent interactions can be approximated by some type of analytical potential functions (rather than by the actual solution of the Schrodinger equation for the entire solute-solvent system). For example, the simplest way to describe the potential surface of a collection of water molecules is to represent it as a sum of two-body interactions (the interac-... [Pg.74]

Resonance stabilization is a quantum mechanical effect it is discussed further in Section 3.12. [Pg.195]

The interactions between electrons are inherently many-body forces. There are several methods in common use today which try to incorporate some, or all, of the many-body quantum mechanical effects. An important term is that of electronic exchange [57, 58]. Mathematically, when two particles in the many-body wavefunction are exchanged the wavefunction changes sign ... [Pg.21]

Quantum mechanical effects—tunneling and interference, resonances, and electronic nonadiabaticity— play important roles in many chemical reactions. Rigorous quantum dynamics studies, that is, numerically accurate solutions of either the time-independent or time-dependent Schrodinger equations, provide the most correct and detailed description of a chemical reaction. While hmited to relatively small numbers of atoms by the standards of ordinary chemistry, numerically accurate quantum dynamics provides not only detailed insight into the nature of specific reactions, but benchmark results on which to base more approximate approaches, such as transition state theory and quasiclassical trajectories, which can be applied to larger systems. [Pg.2]

It is getting more and more important to treat realistic large chemical and even biological systems theoretically by taking into account the quantum mechanical effects, such as nonadiabatic transition, tunneling, and intereference. The simplest method to treat nonadiabatic dynamics is the TSH method introduced... [Pg.98]

Needless to say, tunneling is one of the most famous quantum mechanical effects. Theory of multidimensional tunneling, however, has not yet been completed. As is well known, in chemical dynamics there are the following three kinds of problems (1) energy splitting due to tunneling in symmetric double-well potential, (2) predissociation of metastable state through... [Pg.114]

Another experiment that relates to the physical interpretation of the wave function was performed by O. Stem and W. Gerlach (1922). Their experiment is a dramatic illustration of a quantum-mechanical effect which is in direct conflict with the concepts of classical theory. It was the first experiment of a non-optical nature to show quantum behavior directly. [Pg.26]

Where A F(z) is the free energy at z relative to that at the reactant state minimum zr, and the ensemble average < > is obtained by a quantum mechanical effective potential [15]. Note that the inherent nature of quantum mechanics is at odds with a potential of mean force as a function of a finite reaction coordinate. Nevertheless, the reaction coordinate function z[r] can be evaluated from the path centroids r, first recognized by Feynman and Flibbs as the most classical-like variable in quantum statistical mechanics and later explored by many researchers [14, 15]. [Pg.82]

Most of the AIMD simulations described in the literature have assumed that Newtonian dynamics was sufficient for the nuclei. While this is often justified, there are important cases where the quantum mechanical nature of the nuclei is crucial for even a qualitative understanding. For example, tunneling is intrinsically quantum mechanical and can be important in chemistry involving proton transfer. A second area where nuclei must be described quantum mechanically is when the BOA breaks down, as is always the case when multiple coupled electronic states participate in chemistry. In particular, photochemical processes are often dominated by conical intersections [14,15], where two electronic states are exactly degenerate and the BOA fails. In this chapter, we discuss our recent development of the ab initio multiple spawning (AIMS) method which solves the elecronic and nuclear Schrodinger equations simultaneously this makes AIMD approaches applicable for problems where quantum mechanical effects of both electrons and nuclei are important. We present an overview of what has been achieved, and make a special effort to point out areas where further improvements can be made. Theoretical aspects of the AIMS method are... [Pg.440]

One can also ask about the relationship of the FMS method, as opposed to AIMS, with other wavepacket and semiclassical nonadiabatic dynamics methods. We first compare FMS to previous methods in cases where there is no spawning, and then proceed to compare with previous methods for nonadiabatic dynamics. We stress that we have always allowed for spawning in our applications of the method, and indeed the whole point of the FMS method is to address problems where localized nuclear quantum mechanical effects are important. Nevertheless, it is useful to place the method in context by asking how it relates to previous methods in the absence of its adaptive basis set character. There have been many attempts to use Gaussian basis functions in wavepacket dynamics, and we cannot mention all of these. Instead, we limit ourselves to those methods that we feel are most closely related to FMS, with apologies to those that are not included. A nice review that covers some of the... [Pg.464]

How well do these quantum-semiclassical methods work in describing the dynamics of non-adiabatic systems There are two sources of errors, one due to the approximations in the methods themselves, and the other due to errors in their application, for example, lack of convergence. For example, an obvious source of error in surface hopping and Ehrenfest dynamics is that coherence effects due to the phases of the nuclear wavepackets on the different surfaces are not included. This information is important for the description of short-time (few femtoseconds) quantum mechanical effects. For longer timescales, however, this loss of information should be less of a problem as dephasing washes out this information. Note that surface hopping should be run in an adiabatic representation, whereas the other methods show no preference for diabatic or adiabatic. [Pg.403]

Experiments have implied that quantum mechanical effects can be involved in the proton and hydride transfer of several biological processes. Specifically, large kinetic isotope effects (KIE) observed for... [Pg.169]

The decrease in the heat capacity at low temperatures was not explained until 1907, when Einstein demonstrated that the temperature dependence of the heat capacity arose from quantum mechanical effects [1], Einstein also assumed that all atoms in a solid vibrate independently of each other and that they behave like harmonic oscillators. The motion of a single atom is again seen as the sum of three linear oscillators along three perpendicular axes, and one mole of atoms is treated by looking at 3L identical linear harmonic oscillators. Whereas the harmonic oscillator can take any energy in the classical limit, quantum theory allows the energy of the harmonic oscillator (en) to have only certain discrete values ( ) ... [Pg.233]


See other pages where Effect quantum-mechanical is mentioned: [Pg.894]    [Pg.298]    [Pg.37]    [Pg.277]    [Pg.7]    [Pg.505]    [Pg.91]    [Pg.57]    [Pg.83]    [Pg.37]    [Pg.97]    [Pg.104]    [Pg.106]    [Pg.241]    [Pg.281]    [Pg.264]    [Pg.482]    [Pg.445]    [Pg.450]    [Pg.29]    [Pg.195]    [Pg.45]    [Pg.46]    [Pg.80]    [Pg.268]    [Pg.5]    [Pg.65]    [Pg.329]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Quantum effective

Quantum effects

© 2024 chempedia.info