Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum minerals

In 1963 Dr. Danbk joined the Institute of Inorganic Chemistry of the Slovak Academy of Sciences in Bratislava, of which he was the director in the period 1991-1995. His main field of interest was the physical chemistry of molten salts systems in particular the study of the relations between the composition, properties, and structure of inorganic melts. He developed a method to measure the electrical conductivity of molten fluorides. He proposed the thermodynamic model of silicate melts and applied it to a number of two- and three-component silicate systems. He also developed the dissociation model of molten salts mixtures and applied it to different types of inorganic systems. More recently his work was in the field of chemical synthesis of double oxides from fused salts and the investigation of the physicochemical properties of molten systems of interest as electrolytes for the electrochemical deposition of metals from natural minerals, molybdenum, the synthesis of transition metal borides, and for aluminium production. [Pg.461]

In 1778, Swedish chemist Carl Welhehn Scheele conducted research on a sulfide mineral now known as molybdenite (MoSJ. Molybdenite was often confused with graphite and lead ore. Scheele concluded that it did not contain lead, as was suspected at the time, and reported that the mineral contained a new element that he called molybdenum after the mineral. Molybdenum metal was prepared in an impure form in 1782 by Peter Jacob Hjelm. An... [Pg.373]

Bengt Qvist, an apprentice in the Swedish Board of Mines, reported in 1754 about an investigation of molybdcena. The report. Observations about Blyerts (Blacklead) gave some important findings about the mineral molybdenum sulfide ... [Pg.593]

Uranium is the best indicator of uranium mineralization owing to its remarkable mobility in the oxidized environment. The primary value of arsenic is its large halo, which increases the likelihood of target detection and helps with verification of mineralization. Molybdenum is another good pathfinder for uranium. It has a much smaller halo, which may be located both along the strike of, and downdip from, the centre of mineralization. A laboratory needs good sensitivity to report values for this element. [Pg.31]

Iron and manganese occur in a number of soil minerals. Sodium and chlorine (as chloride) occur naturally in soil and are transported as atmospheric particulate matter from marine sprays (see Chapter 10). Some of the other micronutrients and trace elements are found in primary (unweathered) minerals that occur in soil. Boron is substituted isomorphically for Si in some micas and is present in tourmaline, a mineral with the formula NaMg3AlgB3Sig027(0H,F)4. Copper is isomorphically substituted for other elements in feldspars, amphiboles, olivines, p5Toxenes, and micas it also occurs as trace levels of copper sulfides in silicate minerals. Molybdenum occurs as molybdenite (M0S2). Vanadium is isomorphically substituted for Fe or A1 in oxides, pyroxenes, amphiboles, and micas. Zinc is present as the result of isomorphic substitution for Mg, Fe, and Mn in oxides, amphiboles, olivines, and pyroxenes and as trace zinc sulfide in silicates. Other trace elements that occur as specific minerals, sulfide inclusions, or by isomorphic substitution for other elements in minerals are chromium, cobalt, arsenic, selenium, nickel, lead, and cadmium. [Pg.557]

Rhenium does not occur free in nature or as a compound in a distinct mineral species. It is, however, widely spread throughout the earth s crust to the extent of about 0.001 ppm. Commercial rhenium in the U.S. today is obtained from molybdenum roaster-flue dusts obtained from copper-sulfide ores mined in the vicinity of Miami, Arizona, and elsewhere in Arizona and Utah. [Pg.134]

Thorium occurs in thorite and in thorianite. Large deposits of thorium minerals have been reported in New England and elsewhere, but these have not yet been exploited. Thorium is now thought to be about three times as abundant as uranium and about as abundant as lead or molybdenum. Thorium is recovered commercially from the mineral monazite, which contains from 3 to 9% Th02 along with rare-earth minerals. [Pg.174]

Uranium, not as rare as once thought, is now considered to be more plentiful than mercury, antimony, silver, or cadmium, and is about as abundant as molybdenum or arsenic. It occurs in numerous minerals such as pitchblende, uraninite, carnotite, autunite, uranophane, and tobernite. It is also found in phosphate rock, lignite, monazite sands, and can be recovered commercially from these sources. [Pg.200]

Cobalt, copper, molybdenum, iodine, iron, manganese, nickel, selenium, and zinc are sometimes provided to mminants. Mineral deficiency or toxicity in sheep, especially copper and selenium, is a common example of dietary mineral imbalance (21). Other elements may be required for optimal mminant performance (22). ExceUent reviews of trace elements are available (5,22). [Pg.156]

Flotation or froth flotation is a physicochemical property-based separation process. It is widely utilised in the area of mineral processing also known as ore dressing and mineral beneftciation for mineral concentration. In addition to the mining and metallurgical industries, flotation also finds appHcations in sewage treatment, water purification, bitumen recovery from tar sands, and coal desulfurization. Nearly one biUion tons of ore are treated by this process aimuaHy in the world. Phosphate rock, precious metals, lead, zinc, copper, molybdenum, and tin-containing ores as well as coal are treated routinely by this process some flotation plants treat 200,000 tons of ore per day (see Mineral recovery and processing). Various aspects of flotation theory and practice have been treated in books and reviews (1 9). [Pg.40]

Minerals and Metals. HCl is consumed in many mining operations for ore treatment, extraction, separation, purification, and water treatment (see Mineral recovery and processing). Significant quantities are also used in the recovery ofmolybdenum (see Molybdenum and molybdenum alloys) and gold (see Gold and gold compounds). This market consumed about 36 thousand metric tons in 1993. [Pg.451]

Under unusual circumstances, toxicity may arise from ingestion of excess amounts of minerals. This is uncommon except in the cases of fluorine, molybdenum, selenium, copper, iron, vanadium, and arsenic. Toxicosis may also result from exposure to industrial compounds containing various chemical forms of some of the minerals. Aspects of toxicity of essential elements have been pubhshed (161). [Pg.388]

Because of its position in the Periodic Table, molybdenum has sometimes been linked to chromium (see Chromiumand chromium alloys) or to other heavy metals. However, unlike those elements, molybdenum and its compounds have relatively low toxicity, as shown in Table 3. On the other hand, molybdenum has been identified as a micronutrient essential to plant life (11,12) (see Fertilizers), and plays a principal biochemical role in animal health as a constituent of several important enzyme systems (see Mineral nutrients). [Pg.463]

Chemical Properties. Molybdenum has good resistance to chemical attack by mineral acids, provided that oxidizing agents ate not present. The metal also offers excellent resistance to attack by several liquid metals. The approximate temperature limits for molybdenum to be considered for long-time service while in contact with various metals in the hquid state ate as follows ... [Pg.465]

Molybdenum, recognized as an essential trace element for plants, animals, and most bacteria, is present in a variety of metaHo enzymes (44—46). Indeed, the absence of Mo, and in particular its co-factor, in humans leads to severe debility or early death (47,48). Molybdenum in the diet has been impHcated as having a role in lowering the incidence of dental caries and in the prevention of certain cancers (49,50). To aid the growth of plants. Mo has been used as a fertilizer and as a coating for legume seeds (51,52) (see FERTILIZERS Mineral NUTRIENTS). [Pg.475]

Biomedical Uses. The molybdate ion is added to total parenteral nutrition protocols and appears to alleviate toxicity of some of the amino acid components in these preparations (see Mineral NUTRIENTS) (97). Molybdenum supplements have been shown to reduce iiitrosarnine-induced mammary carcinomas in rats (50). A number of studies have shown that certain heteropolymolybdates (98) and organometaUic molybdenum compounds (99) have antiviral, including anti-AIDS, and antitumor activity (see Antiviral agents Chemotherapeutics, anticancer). [Pg.478]

Zn, Ni, Cu, and W, yet is the seventh most abundant element overall because Cr is concentrated in the earth s core and mantle (1,2). It has atomic number 24 and belongs to Group 6 (VIB) of the Periodic Table and is positioned between vanadium and manganese. Other Group 6 members are molybdenum and tungsten. On a toimage basis, chromium ranks fourth among the metals and thirteenth of aU mineral commodities in commercial production. [Pg.113]

A U.S. Bureau of Mines survey covering 202 froth flotation plants in the United States showed that 198 million tons of material were treated by flotation in 1960 to recover 20 million tons of concentrates which contained approximately 1 billion in recoverable products. Most of the worlds copper, lead, zinc, molybdenum, and nickel are produced from ores that are concentrated first by flotation. In addition, flotation is commonly used for the recoveiy of fine coal and for the concentration of a wide range of mineral commodities including fluorspar, barite, glass sand, iron oxide, pyrite, manganese ore, clay, feldspar, mica, sponumene, bastnaesite, calcite, garnet, kyanite, and talc. [Pg.1808]

Finally, in 1797, the Frenchman L. N. Vauquelin discovered the oxide of a new element in a Siberian mineral, now known as crocoite (PbCr04), and in the following year isolated the metal itself by charcoal reduction. This was subsequently named chromium (Greek xpco ia, chroma, colour) because of the variety of colours found in its compounds. Since their discoveries the metals and their compounds have become vitally important in many industries and, as one of the biologically active transition elements, molybdenum has been the subject of a great deal of attention in recent years, especially in the field of nitrogen fixation (p. 1035). [Pg.1002]

Toluene-3,4-dithiol, usually called dithioP, yields a slightly soluble, dark-green complex, (CH3.C6H3.S2)3Mo(VI), with molybdenum(VI) in a mineral acid medium, which can be extracted by organic solvents. The resulting green solution is used for the colorimetric determination of molybdenum. [Pg.693]

Glocker and Frohnmayer determined the characteristic constant c for nine elements (Reference 2, Table 4) ranging in atomic numbers from 42 (molybdenum) to 90 (thorium). They proved that identical results could be obtained with the sample in the primary (polychromatic) or in the diffracted (monochromatic) beam. The method was applied with good results to the determination of barium in glass of antimony in a silicate of hafnium in the mineral alvite and of molybdenum, antimony, barium, and lanthanum in a solution of their salts—for example, 5.45% barium was found on 90-minute exposure by the x-ray method for a glass that yielded 5.8% on being analyzed chemically. [Pg.140]


See other pages where Molybdenum minerals is mentioned: [Pg.260]    [Pg.818]    [Pg.120]    [Pg.260]    [Pg.818]    [Pg.120]    [Pg.1042]    [Pg.462]    [Pg.463]    [Pg.467]    [Pg.469]    [Pg.20]    [Pg.305]    [Pg.305]    [Pg.389]    [Pg.219]    [Pg.1787]    [Pg.166]    [Pg.648]    [Pg.1002]    [Pg.1041]    [Pg.442]    [Pg.136]    [Pg.200]    [Pg.349]    [Pg.120]    [Pg.165]    [Pg.248]    [Pg.306]    [Pg.184]   
See also in sourсe #XX -- [ Pg.589 , Pg.597 ]




SEARCH



Molybdenum mineral processing

Molybdenum-Containing Minerals

© 2024 chempedia.info