Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molten-salt system

Fig. 4. In the Solar Two Project a molten salt system shown in the scheme replaces Solar One s water/steam system. In operation, "cold" molten salt is pumped from a storage tank to a receiver on a tower. Sunlight reflected from a field of sun-tracking mirrors heats the salt in the receiver to 1050°C. The heated salt then flows down into a hot storage tank where it is pumped to a heat exchanger to produce the steam that drives a turbine. Some of the hot molten salt can also be stored to produce steam on demand at a later time. Salt cooled to 550°C in the steam generator recirculates through the system and... Fig. 4. In the Solar Two Project a molten salt system shown in the scheme replaces Solar One s water/steam system. In operation, "cold" molten salt is pumped from a storage tank to a receiver on a tower. Sunlight reflected from a field of sun-tracking mirrors heats the salt in the receiver to 1050°C. The heated salt then flows down into a hot storage tank where it is pumped to a heat exchanger to produce the steam that drives a turbine. Some of the hot molten salt can also be stored to produce steam on demand at a later time. Salt cooled to 550°C in the steam generator recirculates through the system and...
Based on the results of the Solar One plant. Southern California Edison formed a consortium that included DOE and EPRI to constmct a Solar Two Project. Solar Two will convert the idle Solar One central receiver plant from a water/steam system to a molten salt system, thereby improving efficiency and operating performance. With the molten salt technology, solar energy can be collected during the day and stored in the salt to produce electricity when needed. The three-year demonstration is scheduled to begin in late 1996. [Pg.106]

Alternatively, the TiCl may be reduced using hydrogen, sodium, or magnesium. It follows that TiCl2 is the first stage in the KroU process for the production of titanium metal from titanium tetrachloride. A process for recovery of scrap titanium involving the reaction of scrap metal with titanium tetrachloride at >800° C to form titanium dichloride, collected in a molten salt system, and followed by reaction of the dichloride with magnesium to produce pure titanium metal, has been patented (122,123). [Pg.129]

Electrolysis. Electrowinning of zirconium has long been considered as an alternative to the KroU process, and at one time zirconium was produced electrolyticaHy in a prototype production cell (70). Electrolysis of an aH-chloride molten-salt system is inefficient because of the stabiUty of lower chlorides in these melts. The presence of fluoride salts in the melt increases the stabiUty of in solution, decreasing the concentration of lower valence zirconium ions, and results in much higher current efficiencies. The chloride—electrolyte systems and electrolysis approaches are reviewed in References 71 and 72. The recovery of zirconium metal by electrolysis of aqueous solutions in not thermodynamically feasible, although efforts in this direction persist. [Pg.431]

Typical values of self-diffusion coefficients and mutual diffusion coefficients in aqueous solutions and in molten salt systems such as (K,Ag)N03 are of the order... [Pg.166]

Other Pyrochemical Processes. The chemistry of pyrochemi-cal separation processes is another fertile area of research e.g., new molten salt systems, scrub alloys, etc. and the behavior of plutonium in these systems. Studies of liquid plutonium metal processes should also be explored, such as filtration methods to remove impurities. Since Rocky Flats uses plutonium in the metal form, methods to convert plutonium compounds to metal and purify the metal directly are high-priority research projects. [Pg.355]

Wave-front shearing interferometry has been applied to transparent molten salt systems by Gustafsson et al. " The optical path of a light beam traversing the cell at an arbitrary level x is expressed by... [Pg.161]

Sindzinger and Gillan have calculated the thermal conductivity for NaCl and KCl melts as well as for sohds on the basis of MD simulations in Ml thermal equilibrium using the Green-Kubo relations (Table 17). In a single molten salt system, the local fluxes jz and of charge and energy... [Pg.195]

Because of the inherent technical difficulties, investigations of transport properties in molten salts are much less common than those of aqueous solutions. However, interpretation of the phenomena seems to be even simpler in molten salts where water is not involved. Molten salt systems are considered to be the simplest liquid electrolytes. Data have been compiled largely due to the great efforts of the Janz group." "... [Pg.196]

The electrolysis temperature affects the electrolyte conductivity, the overpotential, and the solubility of the electrodeposit in aqueous as well as in molten salt systems. The effect of temperature is particularly important in the latter case. The lower limit of the temperature of operation is set by the liquidus temperature of the bath and the solubility of the solute. Generally, the temperature chosen is at least 50 °C above the melting temperature of... [Pg.700]

V. Membrane Systems, Phase-Transfer Catalysis, Molten Salt Systems 367... [Pg.319]

Reciprocal molten salt systems are those containing at least two cations and two anions. We shall deal with the simplest member of this class, that containing the ions A+, B+, X-, and Y-. The four constituents of the solution, AX, BX, AY, and BY, will be designated by 1, 2, 3, and 4 respectively. There are four ions in the system and one restriction of electroneutrality. Consequently, of the four constituents, there are only three which are independent components. In order to calculate the Helmholtz free energy of mixing conveniently, we must (arbitrarily) choose the three components. Here we choose BX, AY, and BY. This choice requires that in order to make mixtures of some compositions a negative quantity of BY must be used. This presents no difficulty in the theory and is thermodynamically self-consistent. One mole of some arbitrary composition (XA, XB, Yx, XY) can be made by mixing Arx moles of BX (component 2), XA moles of AY (component 3), and (XY — XA) moles of BY (component 4). ... [Pg.109]

Reversible cell potentials have been the source of much thermodynamic data on aqueous electrolytes. In recent years, this technique has been extended to nonaqueous solutions and to molten salt systems. Its use for aqueous solutions, relative to other techniques, has decreased. Various ion specific electrodes have been developed in recent years. These are used primarily in analytical chemistry and have not produced much thermodynamic data. [Pg.473]

Very pure Nb may be obtained by electrowinning from 02-free molten salt system (double fluorides or chlorides). [Pg.405]

Molten Salt Systems at Argonne National Laboratory and General Motors... [Pg.34]

The utilization of Ti as a rechargeable negative rests on the attenuation of the effects of the passivating oxide film. In the review, several dry molten salt systems are proposed which would seem to have promise (90b). The effects of addition of moisture to decrease both the m.p. and operating temperature were not considered there. [Pg.288]

The electrochemical reduction of TiCU and ZrCl4, in chloroaluminate melts and other molten salt systems, to lower valent halides has been fairly widely studied [4-7]. This has also been extended to studies of centered hexanuclear Zr halide clusters. Thus, ambient temperature AICI3 -1 -ethyl-3-methylimidazolium chloride (ImCl) molten salts, both basic (40/60 mol% AlCls/ImCl) and acidic (60/40 mol% AICI3 /ImCl), were used in an electrochemical investigation of clusters... [Pg.353]

Typical values of self-diffusion coefficients and mutual diffusion coefficients in aqueous solutions and in molten salt systems such as (K,Ag)N03 are of the order of 10 m s and the coefficients do not usually vary by more than a factor of 10 over the whole composition range [1, 2, 15]. From measurements in pure ionic liquids we have learned that their self-diffusion coefficients are only of the order of 10 m s From this point of view it is interesting to investigate systems of ordinary and ionic liquids. Figure 4.4-3 shows the results of first measurements in the methanol/[BMIM][PF6] system, which can be seen as a prototype for a system in which an organic and an ionic liquid are mixed. [Pg.166]

Hussey, C. L., Room-temperature molten salt systems, Adv. Molten Salt Chem., 5, 185, 1983. [Pg.292]

Room temperature molten salt systems based on methyl-hexyl-imidazolium iodide appear to afford particular advantages over organic liquids as solvents for solar cell electrolytes. Cell performance showed outstanding stability, with an estimated sensitizer turnover in excess of 50 million (Papageorgiou et al., 1996). [Pg.171]

Molten Salt Systems Avoid Hydrogen Codeposition... [Pg.627]

The molten salt systems listed earlier are among those most frequently used as solvents for electroanalytical chemistry. This list is by no means inclusive because in many cases there are subspecies of these melt systems that have not been covered that enjoy equal or only slightly less popularity than the systems that were discussed. In addition, there are a number of molten salts used for electrochemistry that have not achieved the level of popularity of the systems described in the preceding sections. Molten alkali sulfates, for example, Li2S04-K2S04 eutectic (80.0-20.0 mol%, mp = 535°C) [55,56], are included in this category. [Pg.522]

Subject areas for the Series include solutions of electrolytes, liquid mixtures, chemical equilibria in solution, acid-base equilibria, vapour-liquid equilibria, liquid-liquid equilibria, solid-liquid equilibria, equilibria in analytical chemistry, dissolution of gases in liquids, dissolution and precipitation, solubility in cryogenic solvents, molten salt systems, solubility measurement techniques, solid solutions, reactions within the solid phase, ion transport reactions away from the interface (i.e. in homogeneous, bulk systems), liquid crystalline systems, solutions of macrocyclic compounds (including macrocyclic electrolytes), polymer systems, molecular dynamic simulations, structural chemistry of liquids and solutions, predictive techniques for properties of solutions, complex and multi-component solutions applications, of solution chemistry to materials and metallurgy (oxide solutions, alloys, mattes etc.), medical aspects of solubility, and environmental issues involving solution phenomena and homogeneous component phenomena. [Pg.10]

Figure 5.18 Design for silver-silver ion reference electrode for use in molten-salt systems. Figure 5.18 Design for silver-silver ion reference electrode for use in molten-salt systems.
Chlorostannate and chloroferrate [110] systems have been characterized but these metals are of little use for electrodeposition and hence no concerted studies have been made of their electrochemical properties. The electrochemical windows of the Lewis acidic mixtures of FeCh and SnCh have been characterized with ChCl (both in a 2 1 molar ratio) and it was found that the potential windows were similar to those predicted from the standard aqueous reduction potentials [110]. The ferric chloride system was studied by Katayama et al. for battery application [111], The redox reaction between divalent and trivalent iron species in binary and ternary molten salt systems consisting of 1-ethyl-3-methylimidazolium chloride ([EMIMJC1) with iron chlorides, FeCb and FeCl j, was investigated as possible half-cell reactions for novel rechargeable redox batteries. A reversible one-electron redox reaction was observed on a platinum electrode at 130 °C. [Pg.107]


See other pages where Molten-salt system is mentioned: [Pg.1122]    [Pg.700]    [Pg.701]    [Pg.277]    [Pg.281]    [Pg.84]    [Pg.32]    [Pg.270]    [Pg.738]    [Pg.627]    [Pg.627]    [Pg.28]    [Pg.512]    [Pg.513]    [Pg.523]    [Pg.532]    [Pg.250]    [Pg.241]    [Pg.245]    [Pg.129]    [Pg.48]   
See also in sourсe #XX -- [ Pg.679 ]




SEARCH



© 2024 chempedia.info