Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Minerals monazite

Thorium occurs in thorite and in thorianite. Large deposits of thorium minerals have been reported in New England and elsewhere, but these have not yet been exploited. Thorium is now thought to be about three times as abundant as uranium and about as abundant as lead or molybdenum. Thorium is recovered commercially from the mineral monazite, which contains from 3 to 9% Th02 along with rare-earth minerals. [Pg.174]

The element occurs along with other rare-earth elements in a variety of minerals. Monazite and bastnasite are the two principal commercial sources of the rare-earth metals. It was prepared in relatively pure form in 1931. [Pg.179]

Gr. neos, new, and didymos, twin) In 1841, Mosander, extracted from cerite a new rose-colored oxide, which he believed contained a new element. He named the element didymium, as it was an inseparable twin brother of lanthanum. In 1885 von Welsbach separated didymium into two new elemental components, neodymia and praseodymia, by repeated fractionation of ammonium didymium nitrate. While the free metal is in misch metal, long known and used as a pyrophoric alloy for light flints, the element was not isolated in relatively pure form until 1925. Neodymium is present in misch metal to the extent of about 18%. It is present in the minerals monazite and bastnasite, which are principal sources of rare-earth metals. [Pg.181]

Thorium is a radioactive metal that occurs naturally in several minerals and rocks usually associated with uranium. However, it is approximately three times more abundant in nature than uranium. On average, soil contains 6 to 10 ppm of thorium. Thorium is most commonly found in the rare-earth thorium-phosphate mineral, monazite, which contains 8% 10% thorium. Current production of thorium is, therefore, linked to the production of monazite, which varies between 5500 and 6500 tonnes per year, with approximately 300 to 600 tonnes of thorium recovered (NEA/IAEA, 2006a). [Pg.130]

Lanthanide, as a pure metal, is difficult to separate from its ores, and it is often mixed with other elements of the series. It is mosdy obtained through an ion-exchange process from the sands of the mineral monazite, which can contain as much as 25% lanthanum as well as the oxides of several other elements of the series. The metal is malleable and ductile and can be formed into many shapes. Lanthanum is considered the most basic (alkaline) of the rare-earth elements. [Pg.278]

Dysprosium is the 43rd most abundant element on Earth and ranks ninth in abundance of the rare-earths found in the Earth s crust. It is a metallic element that is usually found as an oxide (disprosia). Like most rare-earths, it is found in the minerals monazite and allanite, which are extracted from river sands of India, Africa, South America, and Australia and the beaches of Florida. It is also found in the mineral bastnasite in California. [Pg.295]

Swedish chemist Per Teodor Cleve Derives from the mineral monazite very scarce and expensive has few commercial applications. [Pg.245]

Europeum generally is produced from two common rare earth minerals monazite, a rare earth-thorium orthophosphate, and bastnasite, a rare earth fluocarbonate. The ores are crushed and subjected to flotation. They are opened by sulfuric acid. Reaction with concentrated sulfuric acid at a temperature between 130 to 170°C converts thorium and the rare earths to their hydrous sulfates. The reaction is exothermic which raises the temperature to 250°C. The product sulfates are treated with cold water which dissolves the thorium and rare earth sulfates. The solution is then treated with sodium sulfate which precipitates rare earth elements by forming rare earth-sodium double salts. The precipitate is heated with sodium hydroxide to obtain rare earth hydrated oxides. Upon heating and drying, cerium hydrated oxide oxidizes to tetravalent ceric(lV) hydroxide. When the hydrated oxides are treated with hydrochloric acid or nitric acid, aU but Ce4+ salt dissolves in the acid. The insoluble Ce4+ salt is removed. [Pg.295]

Lanthanum is most commonly obtained from the two naturally occurring rate-earth minerals, monazite and bastnasite. Monazite is a rare earth-thorium phosphate that typically contains lanthanum between 15 to 25%. Bastnasite is a rare earth-fluocarbonate-type mineral in which lanthanum content may vary, usually between 8 to 38%. The recovery of the metal from either of its ores involves three major steps (i) extraction of all rare-earths combined together from the non-rare-earth components of the mineral, (ii) separation or isolation of lanthanum from other lanthanide elements present... [Pg.444]

Neodymium is recovered mostly from mineral monazite and bastnasite, the... [Pg.598]

Neodymium oxide is produced from the two principal rare earth minerals, monazite, and bastnasite. The oxide is obtained as an intermediate in the recovery of neodymium metal (See Neodymium). [Pg.601]

Praesodymium may be recovered from its minerals monazite and bastana-site. The didymia extract of rare earth minerals is a mixture of praesodymia and neodymia, primarily oxides of praesodymium and neodymium. Several methods are known for isolation of rare earths. These are applicable to all rare earths including praesodymium. They include solvent extractions, ion-exchange, and fractional crystallization. While the first two methods form easy and rapid separation of rare earth metals, fractional crystaUization is more tedious. Extractions and separations of rare earths have been discussed in detail earlier (see Neodymium and Cerium). [Pg.779]

Terbium is recovered from the minerals, monazite, xenotime, and euxenite. The recovery processes are quite similar to those of other lanthanide elements (See individual lanthanide elements). The metal is separated from other rare... [Pg.920]

Large thorium deposits have heen found in many parts of the world. It occurs in minerals thorite, ThSi04, and thorianite, Th02"U02. Thorium also is found in mineral monazite which contains between 3 to 9% Th02. Th02 is the principal source of commercial thorium. Abundance of thorium in earth s crust is estimated at about 9.6 mg/kg. Thorium and uranium are believed to have contributed much of the internal heat of the earth due to their radioactive emanations since earth s formation. [Pg.928]

Thulium was discovered in 1879 by Cleve and named after Thule, the earliest name for Scandinavia. Its oxide thulia was isolated by James in 1911. Thulium is one of the least abundant lanthanide elements and is found in very small amounts with other rare earths. It occurs in the yttrium-rich minerals xenotime, euxenite, samarskite, gadolinite, loparite, fergusonite, and yttroparisite. Also, it occurs in trace quantities in minerals monazite and... [Pg.932]

From 1940 to 1965, the principal source of these rare earth products was the mineral monazite (Th, RE orthophosphate) which fortunately or unfortunately, depending on one s point of view, contains 4-6% thorium. Today, there is essentially no market for thorium in the U.S. The expense of separating out thorium-free rare-earth products from monazite is not only excessive, but bound tightly in governmental red tape because of the mild radioactivity of the thorium. This situation does not apply in France, Brazil, or India, whose governments are wisely stockpiling all extracted thorium for future atomic energy needs. [Pg.95]

Promethium is a radioactive element with a half-life of 2.6 years and does not occur naturally. The other elements, known sometimes as the rare earth elements, are always found in association, principally in the minerals monazite (LnP04) and bastneasite (LnC03F). The electropositive and reactive elements can be obtained by reduction of LnCl3 with Ca, and are sometimes used together as mischmeta. Specialist... [Pg.277]

Only thorium and uranium have half-lives long enough to survive since the formation of the Earth. Thorium is found together with lanthanides in the phosphate mineral monazite (LnP04), and uranium occurs as pitchblende U303 and carnotite K2(U02)2(V04 )2.3H20. Uranium is principally used as a... [Pg.282]

Many of the f-block elements are extracted from phosphate minerals. Monazite, MPO4, can contain the lanthanide metals, Y and Th, at the cation sites M. The Torbenite and other... [Pg.3641]

More than 100 minerals are known to contain one or more of the rare lanthanoids. Only two of these minerals, monazite and bastnasite, are commercially important. These minerals occur in North and South Carolina, Idaho, Colorado, and Montana in the United States, and in countries such as Australia, Brazil, China, and India, among others. [Pg.167]

Praseodymium is one of the more common lanthanoids. It is thought to occur with an abundance of about 3.5 to 5.5 parts per million in Earth s crust. It occurs primarily with the other rare earth elements in two minerals, monazite and bastnasite. [Pg.463]

As with other rare earth elements, the primary sources of samarium are the mineral monazite and bastnasite. It is also found in samarskite, cerite, orthite, ytterbite, and fluorspar. [Pg.513]

Thorium is widely distributed in Nature and there are large deposits of the principal mineral, monazite, a complex phosphate containing uranium, cerium, and other lanthanides. The extraction of thorium from monazite is complicated, the main problems being the destruction of the resistant sand and the separation of thorium from cerium and phosphate. One method involves a digestion with sodium hydroxide the insoluble hydroxides are removed and dissolved in hydrochloric acid. When the pH of the solution is adjusted to 5.8, all the thorium and uranium, together with about 3% of the lanthanides, are precipitated as hydroxides. The thorium is recovered by tributyl phosphate extraction from >6M hydrochloric acid solution or by... [Pg.1093]

Diversify the types of rare-earth ores mined, and use less common REE-minerals such as eudialyte or loparite. In the latter minerals, the concentration of REEs and the ratio of REEs occurring are different from what is found in the common ore minerals monazite, bastnaesite and xenotime. [Pg.109]


See other pages where Minerals monazite is mentioned: [Pg.220]    [Pg.120]    [Pg.599]    [Pg.362]    [Pg.1041]    [Pg.12]    [Pg.1540]    [Pg.1587]    [Pg.25]    [Pg.331]    [Pg.362]    [Pg.2]    [Pg.151]    [Pg.307]    [Pg.87]    [Pg.329]    [Pg.681]    [Pg.673]    [Pg.678]    [Pg.665]    [Pg.670]    [Pg.716]    [Pg.720]   
See also in sourсe #XX -- [ Pg.425 , Pg.426 ]




SEARCH



Lanthanide mineral monazite

Monazite

© 2024 chempedia.info