Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molten salts mixtures

Figure 13.5 shows a flowsheet for the manufacture of phthalic anhydride by the oxidation of o-xylene. Air and o-xylene are heated and mixed in a Venturi, where the o-xylene vaporizes. The reaction mixture enters a tubular catalytic reactor. The heat of reaction is removed from the reactor by recirculation of molten salt. The temperature control in the reactor would be diflficult to maintain by methods other than molten salt. [Pg.332]

Steam is by far the most widely used medium, useful up to about 475 K. Up to about 700 K organic liquids such as the dowtherms and mineral oil may be used. Mercury and molten salts, such as the eutectic mixture of sodium nitrite, sodium nitrate and potassium nitrate may be used up to 875 K, while above this temperature air and flue gases must be used. [Pg.201]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

The preheated gases react exothermically over the first-stage catalyst with the peak temperature ia the range of 330—430°C, depending on conditions and catalyst selectivity. The conversion of propylene to waste gas (carbon dioxide and carbon monoxide) is more exothermic than its conversion to acroleia. At the end of the catalyst bed the temperature of the mixture drops toward that of the molten salt coolant. [Pg.153]

Other applications of zirconium tetrafluoride are in molten salt reactor experiments as a catalyst for the fluorination of chloroacetone to chlorofluoroacetone (17,18) as a catalyst for olefin polymerization (19) as a catalyst for the conversion of a mixture of formaldehyde, acetaldehyde, and ammonia (in the ratio of 1 1 3 3) to pyridine (20) as an inhibitor for the combustion of NH CIO (21) in rechargeable electrochemical cells (22) and in dental applications (23) (see Dentalmaterials). [Pg.262]

Fused Salt Electrolysis. Only light RE metals (La to Nd) can be produced by molten salt electrolysis because these have a relatively low melting point compared to those of medium and heavy RE metals. Deposition of an alloy with another metal, Zn for example, is an alternative. The feed is a mixture of anhydrous RE chlorides and fluorides. The materials from which the electrolysis cell is constmcted are of great importance because of the high reactivity of the rare-earth metals. Molybdenum, tungsten, tantalum, or alternatively iron with ceramic or graphite linings are used as cmcible materials. Carbon is frequently used as an anode material. [Pg.546]

Other Metals. AH the sodium metal produced comes from electrolysis of sodium chloride melts in Downs ceUs. The ceU consists of a cylindrical steel cathode separated from the graphite anode by a perforated steel diaphragm. Lithium is also produced by electrolysis of the chloride in a process similar to that used for sodium. The other alkaH and alkaHne-earth metals can be electrowon from molten chlorides, but thermochemical reduction is preferred commercially. The rare earths can also be electrowon but only the mixture known as mischmetal is prepared in tonnage quantity by electrochemical means. In addition, beryIHum and boron are produced by electrolysis on a commercial scale in the order of a few hundred t/yr. Processes have been developed for electrowinning titanium, tantalum, and niobium from molten salts. These metals, however, are obtained as a powdery deposit which is not easily separated from the electrolyte so that further purification is required. [Pg.175]

The naphthalene is vaporized, mixed with air, and fed to the top of the reactor. This process also allows for mixtures of ortho- s.yXen.e [95-47-6] to be mixed with the naphthalene and air, which permits the use of dual feedstocks. Both feedstocks are oxidized to phthaUc anhydride. The typical range of reactor temperature is 340—380°C. The reactor temperatures are controlled by an external molten salt. [Pg.484]

Some reactors are designed specifically to withstand an explosion (14). The multitube fixed-bed reactors typically have ca 2.5-cm inside-diameter tubes, and heat from the highly exothermic oxidation reaction is removed by a circulating molten salt. This salt is a eutectic mixture of sodium and potassium nitrate and nitrite. Care must be taken in reactor design and operation because fires can result if the salt comes in contact with organic materials at the reactor operating temperature (15). Reactors containing over 20,000 tubes with a 45,000-ton annual production capacity have been constmcted. [Pg.483]

Heat Treatment and Heat-Transfer Salts. Mixtures of sodium nitrite, sodium nitrate, and potassium nitrate are used to prepare molten salt baths and heat-transfer media. One of the most widely used eutectic mixtures uses 40% NaN02, 7% NaNO, and 53% KNO [7757-79-1] to give a... [Pg.200]

Oxychlorination of methane can yield significant amounts of methylene chloride. A number of patents were obtained by Lummus in the mid-1970s on a high temperature, molten salt oxychlorination process (22,23). Catalyst development work has continued and generally consists of mixtures of Cu, Ni, Cr, or Fe promoted with an alkah metal (24—27). There are no industrial examples of this process at the present time. [Pg.520]

Heat-transfer-fluid heaters maintain the temperature of a circulating liquid heating medium (e.g., a paraffinic hydrocarbon mixture, a Dowtherm, or a molten salt) at a level that may exceed 673 K (750°F). [Pg.2402]

Thermodynamic data show that the stabilities of the caesium chloride-metal chloride complexes are greater than the conesponding sodium and potassium compounds, and tire fluorides form complexes more readily tlrair the chlorides, in the solid state. It would seem that tire stabilities of these compounds would transfer into tire liquid state. In fact, it has been possible to account for the heats of formation of molten salt mixtures by the assumption that molten complex salts contain complex as well as simple anions, so tlrat tire heat of formation of the liquid mixtures is tire mole fraction weighted product of the pure components and the complex. For example, in the CsCl-ZrCU system the heat of formation is given on each side of tire complex compound composition, the mole fraction of the compound... [Pg.349]

A variety of graphite moderated reactor concepts have evolved since the first aircooled reactors of the 1940s. Reactors with gas, water, and molten salt coolants have been constructed and a variety of fuels, and fissile/fertile fuel mixtures, have been used. The evolution and essential features of graphite moderated power producing reactors are described here, and details of their graphites cores are given. [Pg.438]

Thermal stability increases with increasing atomic weight, as expected. Nitrates have been widely used as molten salt baths and heat transfer media, e.g. the 1 1 mixture LiNOs. KNOs melts at 125 C and the ternary mixture of 40% NaN02, 7% NaNOs and 53% KNO3 can be used from its mp 142 up to about 600 C. [Pg.90]

As with the salts of other oxoacids, the thermal stability of nitrates varies markedly with the basicity of the metal, and the products of decomposition are equally varied/ Thus the nitrates of Group 1 and 2 metals find use as molten salt baths because of their thermal stability and low mp (especially as mixtures). Representative values of mp and the temperature (I d) at which the decomposition pressure of O2 reaches 1 atm are ... [Pg.469]

Early in their work on molten salt electrolytes for thermal batteries, the Air Force Academy researchers surveyed the aluminium electroplating literature for electrolyte baths that might be suitable for a battery with an aluminium metal anode and chlorine cathode. They found a 1948 patent describing ionically conductive mixtures of AICI3 and 1-ethylpyridinium halides, mainly bromides [6]. Subsequently, the salt 1-butylpyridinium chloride/AlCl3 (another complicated pseudo-binary)... [Pg.3]

The presence of several anions in these ionic liquids has the effect of significantly decreasing the melting point. Considering that the formation of eutectic mixtures of molten salts is widely used to obtain lower melting points, it is surprising that little effort has been put into identifying the effects of mixtures of cations or anions on the physical properties of other ionic liquids [17]. [Pg.48]

X-ray diffraction has been used for the study both of simple molten salts and of binary mixtures thereof, as well as for liquid crystalline materials. The scattering process is similar to that described above for neutron diffraction, with the exception that the scattering of the photons arises from the electron density and not the nuclei. The X-ray scattering factor therefore increases with atomic number and the scattering pattern is dominated by the heavy atoms in the sample. Unlike in neutron diffraction, hydrogen (for example) scatters very wealdy and its position cannot be determined with any great accuracy. [Pg.134]

The first examples of alkylation reactions in molten salts were reported in the 1950 s. Baddeley and Williamson performed a number of intramolecular cycliza-tion reactions [76] (Scheme 5.1-46), carried out in mixtures of sodium chloride and aluminium chloride. The reactions were run at below the melting point of the pure salt, and it is presumed that the mixture of reagents acts to lower the melting point. [Pg.196]

Aluminium-base alloys resist the action of many molten salts which are nearly neutral in reaction. Molten sodium nitrate or mixtures of sodium nitrate and potassium nitrate are used for salt bath heat treatment of some aluminium alloys. [Pg.674]

In contact with molten salts, the nickel-base alloys behave much more satisfactorily than is the general experience with molten metals. For this reason they are considered as structural materials in atomic reactors using fluoride mixtures as coolants and are used as vessels for heat-treatment salt baths, as thermocouple sheaths and in similar applications. [Pg.1088]

An ionic rubber comprising a low-temperature molten salt mixture and a small amount of high-molecular-... [Pg.499]


See other pages where Molten salts mixtures is mentioned: [Pg.120]    [Pg.120]    [Pg.62]    [Pg.67]    [Pg.505]    [Pg.224]    [Pg.133]    [Pg.175]    [Pg.65]    [Pg.203]    [Pg.482]    [Pg.585]    [Pg.586]    [Pg.514]    [Pg.317]    [Pg.348]    [Pg.175]    [Pg.3]    [Pg.44]    [Pg.135]    [Pg.303]    [Pg.959]    [Pg.1268]    [Pg.298]    [Pg.390]    [Pg.130]    [Pg.77]    [Pg.114]   


SEARCH



Mixtures of molten salts

© 2024 chempedia.info