Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mineral solution pyrite

Equations such as equation (1) above imply that the oxidative dissolution of pyrite is congruent, directly liberating Fe2+, SO4, and H+ to solution. However, in the common circumstance that water is insufficiently abundant to immediately transport the oxidation products away from the mineral surfaces, pyrite oxidation more commonly results initially in the accumulation of various hydroxysulphate evaporite minerals. These minerals form efflorescent crusts, typically white and yellow in colour, on the surfaces of pyrite-rich coals and mudstones (Fig. 1), and they effectively store the oxidation products in a readily soluble form until some hydro-logical event delivers sufficient water to dissolve and transport them away. Because pyrite often occurs in mudstones, where Al-bearing clay minerals are in contact with acidic pyrite oxidation waters, A1 is frequently released from the clays and is also stored in these hydroxysulphate phases. When these minerals finally dissolve, they result in abrupt and extreme increases in dissolved acidity. For this reason, they have been termed acid generating salts (AGS) (Bayless... [Pg.176]

Alaska, Washington, and Nevada. Ores of the Southeast Missouri lead belt and extensive deposits such as in Silesia and Morocco are of the replacement type. These deposits formed when an aqueous solution of the minerals, under the influence of changing temperature and pressure, deposited the sulfides in susceptible sedimentary rock, usually limestone and dolomites. These ore bodies usually contain galena, sphalerite, and pyrite minerals, but seldom contain gold, silver, copper, antimony, or bismuth. [Pg.32]

Calculate the volume of 5 per cent barium chloride solution which must be added from the approximate sulphur content of the iron pyrites FeS2 or of the mineral sulphide. [Pg.495]

Self-Test L.3B Many abandoned mines have exposed nearby communities to the problem of acid mine drainage. Certain minerals, such as pyrite (FeS,), decompose when exposed to air, forming solutions of sulfuric acid. The acidic mine water then drains into lakes and creeks, killing fish and other animals. At a mine in Colorado, a 16.45-mL sample of mine water was completely neutralized with 25.00 mL of 0.255 M KOH(aq). What is the molar concentration of H2S04 in the water ... [Pg.113]

Chlorite is abundant in Cu-Pb-Zn-rich deposits but is scarce in Au-Ag-rich deposits. Fe chlorite is the most common and Fe-Mg chlorite is subordinate (Shirozu, 1969). Almost all of the chlorite is classified as orthochlorite which can be regarded as part of the clinochlore-daphnite solid solution series. In general, chlorite is intimately associated with sulfide minerals such as sphalerite, galena, pyrite, chalcopyrite, and pyrrhotite. A 7 A septechlorite was reported from the Toyoha Pb-Zn deposits (Sawai, 1980). Interstratified chlorite-smectite and vermiculite-saponite are rather common minerals in Au-Ag deposits (e.g., Yoneda and Watanabe, 1981), but they have not yet been reported from other deposits. [Pg.95]

The H2S concentration of hydrothermal solution is plotted in Fig. 2.33. Based on these data, we can estimate the temperature of hydrothermal solution buffered by alteration mineral assemblages such as anhydrite-pyrite-calcite-magnetite and pyrite-pyrrhotite-magnetite for Okinawa fluids. [Pg.342]

The main alteration minerals surrounding Kuroko ore body are K-mica, K-feldspar, kaolinite, albite, chlorite, quartz, gypsum, anhydrite, and carbonates (dolomite, calcite, magnesite-siderite solid solution), hematite, pyrite and magnetite. Epidote is rarely found in the altered basalt (Shikazono et al., 1995). It contains higher amounts of ferrous iron (Fe203 content) than that from midoceanic ridges (Shikazono, 1984). [Pg.417]

The adsorption of collectors on sulfide mineral occurs by two separate mechanisms chemical and electrochemical. The former results in the presence of chemisorbed metal xanthate (or other thiol collector ion) onto the mineral surface. The latter yields an oxidation product (dixanthogen if collector added is xanthate) that is the hydrophobic species adsorbed onto the mineral surface. The chemisorption mechanism is reported to occur with galena, chalcocite and sphalerite minerals, whereas electrochemical oxidation is reportedly the primary mechanism for pyrite, arsenopyrite, and pyrrhotite minerals. The mineral, chalcopyrite, is an example where both the mechanisms are known to be operative. Besides these mechanisms, the adsorption of collectors can be explained from the point of interfacial energies involved between air, mineral, and solution. [Pg.201]

It is found that the dissolution of zinc sulfides occurs more rapidly when they are in contact with copper sulfide or iron sulfide than when the sulfides of these types are absent. This enhancement is brought about by the formation of a galvanic cell. When two sulfide minerals are in contact, the condition for dissolution in acidic medium of one of the sulfides is that it should be anodic to the other sulfide in contact. This is illustrated schematically in Figure 5.3 (A). Thus, pyrite behaves cathodically towards several other sulfide minerals such as zinc sulfide, lead sulfide and copper sulfide. Consequently, pyrite enhances the dissolution of the other sulfide minerals while these minerals themselves understandably retard the dissolution of pyrite. This explains generally the different leaching behavior of an ore from different locations. The ore may have different mineralogical composition. A particle of sphalerite (ZnS) in contact with a pyrite particle in an aerated acid solution is the right system combination for the sphalerite to dissolve anodically. The situation is presented below ... [Pg.476]

It can be seen, therefore, that ferrous iron and chalcopyrite oxidation are acid-consuming reactions, while pyrite oxidation and iron hydrolysis are acid-producing reactions. Thus, whether the overall reaction in a dump is acid producing or acid-consuming depends on the relative proportions of chalcopyrite and pyrite and on the pH conditions. In practice, sulfuric acid additions to the leach solution applied to the dump are usually required to overcome the acid consuming reactions of the gangue minerals and to keep the pH in a suitable range, typically 2 to 2.4, to optimize bacterial activity and minimize iron hydrolysis. [Pg.498]

The bacterial leaching of uranium minerals is complex. This is because of the fact that uranium minerals are not sulfides and are not, therefore, directly attacked by the bacteria. However, the uranium sources usually have a substantial pyrite content which can be bac-terially oxidized to give an acidic ferric sulfate solution which is an effective leaching medium for uranium minerals. The reactions involved in the system can be shown in a simplified form as ... [Pg.499]

Whether the adsorption of molecules at the surface of minerals is a curse or a blessing for the adsorbed substances depends on many parameters. Experiments showed very different adsorption behaviour of adenine on different minerals. Active minerals are of particular importance for hydrothermal processes (see Sect. 7.2). The surface concentration of adenine on pyrites is fifteen times, that on quartz five times, and on pyrrhotite three and a half times as high as in a starting solution whose concentration is 20 pM (Cohn, 2002). [Pg.95]

Pyrite can dissolve into reducing as well as oxidizing solutions. To find the reaction by which the mineral dissolves to form H2S, we swap this species into the basis in place of the sulfate ion... [Pg.175]

We can expect the sulfide produced by the bacteria to react with the iron in solution to form mackinawite (FeS), a precursor to pyrite (FeS2). The mineral is not in the default thermodynamic database, so we add to the file the reaction... [Pg.265]

Heyes and Trahar (1984) leached pyrite with cyclohexane and compared the extract with a sulphur-containing solution of cyclohexane in a UV spectra photometer as shown in Fig. 1.4, indicating that sulphur was present at the mineral surface. Therefore, the inherent hydrophobicity and natural floatability once thought to be typical of sulphides is now thought to be restricted to sulphides such as molybdenite and other minerals or compound with special structural features. The collectorless floatability that most sulphide minerals showed came from the self-induced or sulphur-induced flotation at certain pulp potential range and certain conditions. [Pg.6]

McCarron et al. (1990) used the X-ray photoelectron spectroscopy to analyze chalcopyrite and pyrite surface after being conditioned in sodium sulphide solutions. They found that multilayer quantities of elemental sulphur were produced at the surface of both minerals in 3 x 10 and 3 x 10" mol/L sulphide solutions although for a given sulphide concentration, the surface coverage of elemental sulphur for p)uite was greater than that for chalcopyrite under open circuit conditions. Eliseev et al. (1982) concluded that elemental sulphur was responsible for the hydrophobicity of pyrite and chalcopyrite treated with sodium sulphide. Luttrell and Yoon (1984a, b) observed a shoulder due to elemental sulfixr near 164 eV in the S (2p) spectra from relatively pure chalcopyrite floated after being conditioned at different pulp potential established by different hydrosulphide concentration. [Pg.61]

Janetski et al. (1977) used voltammetry to study the oxidation of pyrite electrode in solution at different pH in the absence and presence of ethyl xanthate to demonstrate that the oxidation of pyrite itself increases as the pH is increased. At high pH condition, the oxidation of pyrite occurs at a potential cathodic to that for xanthate oxidation and hence, only the mineral will be oxidized at the mixed potential and flotation will be depressed. [Pg.115]

This equation represents the overall reaction which must occur in several steps. The mineral must produce some ferrous ion in solution which reacts with CFT to form Fe(CN)5 . Using measured oxidation potential and pyrite solubility values, Eligillani and Fuerstenau (1968)delineated the stability domains of the compound... [Pg.123]

Janetski et al. (1977) also studied the behavior of a pyrite electrode in a solution of cyanide concentration in the absence and presence of xanthate using voltammetric technique. They reported that on increasing the concentration of cyanide at constant pH and xanthate concentration, the oxidation wave of xanthate is shifted to more anodic potential indicating that the presence of cyanide, which may react with the mineral surface to form an insoluble iron cyanide complex will result in the inhibition of the electrochemical oxidation of xanthate and the depression of pyrite. [Pg.124]

Abstract The flotation mechanism is discussed in the terms of corrosive electrochemistry in this chapter. In corrosion the disolution of minerals is called self-corrosion. And the reaction between reagents and minerals is treated as inhibition of corrosion. The stronger the ability of inhibiting the corrosion of minerals, the stronger the reagents react with minerals. The two major tools implied in the research of electrochemical corrosion are polarization curves and EIS (electrochemistry impedance spectrum). With these tools, pyrite, galena and sphalerite are discussed under different conditions respectively, including interactions between collector with them and the difference of oxidation of minerals in NaOH solution and in lime. And the results obtained from this research are in accordance with those from other conventional research. With this research some new information can be obtained while it is impossible for other methods. [Pg.167]

McCarron, J. J., Walker, G. W., Buckley, A. N., 1990. An X-ray photoeletron spectroscopic investigation of chalcopyrite and pyrite surfaces after conditioning in sodium sulphide solutions. Inter. J. Miner. Process, 30 1 - 76... [Pg.277]

The electrochemical precipitation of gold is considered here the main mechanism for gold precipitation. Such a mechanism can be viewed as a filter to extract gold in solution, even in low concentration, during hydrothermal fluid flow in the veins. It can also be considered as independent of physico-chemical condition variations, hence accounting for the vertically and laterally extensive gold mineralization in the prolific Poderosa-Pataz district. The most important contribution of our study lies in the fact that the As enrichment is not a primary feature of pyrite growth but... [Pg.195]


See other pages where Mineral solution pyrite is mentioned: [Pg.363]    [Pg.202]    [Pg.224]    [Pg.4]    [Pg.130]    [Pg.10]    [Pg.111]    [Pg.438]    [Pg.198]    [Pg.334]    [Pg.74]    [Pg.140]    [Pg.140]    [Pg.369]    [Pg.199]    [Pg.482]    [Pg.196]    [Pg.7]    [Pg.171]    [Pg.269]    [Pg.269]    [Pg.283]    [Pg.252]    [Pg.562]    [Pg.44]    [Pg.123]    [Pg.310]    [Pg.853]    [Pg.30]   
See also in sourсe #XX -- [ Pg.110 , Pg.111 ]




SEARCH



Pyrit

Pyrite

Pyritization

© 2024 chempedia.info