Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles micelle-enhanced separation

Anions and uncharged analytes tend to spend more time in the buffered solution and as a result their movement relates to this. While these are useful generalizations, various factors contribute to the migration order of the analytes. These include the anionic or cationic nature of the surfactant, the influence of electroendosmosis, the properties of the buffer, the contributions of electrostatic versus hydrophobic interactions and the electrophoretic mobility of the native analyte. In addition, organic modifiers, e.g. methanol, acetonitrile and tetrahydrofuran are used to enhance separations and these increase the affinity of the more hydrophobic analytes for the liquid rather than the micellar phase. The effect of chirality of the analyte on its interaction with the micelles is utilized to separate enantiomers that either are already present in a sample or have been chemically produced. Such pre-capillary derivatization has been used to produce chiral amino acids for capillary electrophoresis. An alternative approach to chiral separations is the incorporation of additives such as cyclodextrins in the buffer solution. [Pg.146]

The inhomogeneity of the micellar aggregate also affords assisted spin trapping and the exploitation of magnetic field effects on the charge separated ion pairs [48]. Optical modulation spectroscopy can be used, for example, to follow the decay of radicals formed in homogeneous solution and in SDS micelles. Enhancements of a factor of about 50 in the lifetimes and the steady state concentrations of the radical were observed in the micelle, and a kinetic analysis led to a value of 2 x 103 s 1 for the exit rate constant from the micelle [49]. [Pg.85]

The ability of micelles to enhance photoionization yields of hydrophobic molecules was demonstrated in the early 1970s. Thus, the photoionization yields of pyrene [59], phenothiazine [60] and tetramethylbenzidine [61] cations increased when these molecules were encapsulated in anionic micelles. The effect was attributed to efficient escape of electrons from the geminate charge-separated species formed within the micelle, which is accelerated by the anionic interface. The negative micellar surface imposes an electrostatic barrier between the cations, which remain with the micelle, and the aqueous electron in the bulk water phase, thus increasing the lifetimes of the photoredox products. [Pg.2966]

Phenolic degradation products of lignin in Kraft black liquors were extracted with chloroform after acidification and separated by CE with UVD at 214 nm. Simple CZE was insufficient for the separation of low molecular mass phenolic and neutral degradation products of lignin. Enhanced separation was attained on turning to the MEC technique, where the analytes interact with micelles present in the carrier buffer solution . [Pg.974]

A significant amount of work has demonstrated the feasibility and the interest of reversed micelles for the separation of proteins and for the enhancement or inhibition of specific reactions. The number of micellar systems presently available and studied in the presence of proteins is still limited. An effort should be made to increase the number of surfactants used as well as the set of proteins assayed and to characterize the molecular mechanism of solubilization and the microstructure of the laden organic phases in various systems, since they determine the efficiency and selectivity of the separation and are essential to understand the phenomena of bio-activity loss or preservation. As the features of extraction depend on many parameters, particular attention should be paid to controlling all of them in each phase. Simplified thermodynamic models begin to be developed for the representation of partition of simple ions and proteins between aqueous and micellar phases. Relevant experiments and more complete data sets on distribution of salts, cosurfactants, should promote further developments in modelling in relation with current investigations on electrolytes, polymers and proteins. This work could be connected with distribution studies achieved in related areas as microemulsions for oil recovery or supercritical extraction (74). In addition, the contribution of physico-chemical experiments should be taken into account to evaluate the size and structure of the micelles. [Pg.105]

A number of researchers have studied high-efficiency membrane filtration techniques as they apply to surfacant micelles. This process is called ultrafiltration, microfiltration, and nanofiltration, depending on the pore size of the membranes. These techniques are applied both to isolation of surfactants themselves and, in micelle enhanced ultrafiltration, to separation of other compounds that are trapped in surfactant micelles so that they are too large to permeate the membrane (99). [Pg.182]

In contrast to the situation in the absence of catalytically active Lewis acids, micelles of Cu(DS)2 induce rate enhancements up to a factor 1.8710 compared to the uncatalysed reaction in acetonitrile. These enzyme-like accelerations result from a very efficient complexation of the dienophile to the catalytically active copper ions, both species being concentrated at the micellar surface. Moreover, the higher affinity of 5.2 for Cu(DS)2 compared to SDS and CTAB (Psj = 96 versus 61 and 68, respectively) will diminish the inhibitory effect due to spatial separation of 5.1 and 5.2 as observed for SDS and CTAB. [Pg.154]

In contrast to SDS, CTAB and C12E7, CufDSjz micelles catalyse the Diels-Alder reaction between 1 and 2 with enzyme-like efficiency, leading to rate enhancements up to 1.8-10 compared to the reaction in acetonitrile. This results primarily from the essentially complete complexation off to the copper ions at the micellar surface. Comparison of the partition coefficients of 2 over the water phase and the micellar pseudophase, as derived from kinetic analysis using the pseudophase model, reveals a higher affinity of 2 for Cu(DS)2 than for SDS and CTAB. The inhibitory effect resulting from spatial separation of la-g and 2 is likely to be at least less pronoimced for Cu(DS)2 than for the other surfactants. [Pg.178]

Ultrafiltration of micellar solutions combines the high permeate flows commonly found in ultrafiltration systems with the possibility of removing molecules independent of their size, since micelles can specifically solubilize or bind low molecular weight components. Characteristics of this separation technique, known as micellar-enhanced ultrafiltration (MEUF), are that micelles bind specific compounds and subsequent ultrafiltration separates the surrounding aqueous phase from the micelles [70]. The pore size of the UF membrane must be chosen such, that the micelles are retained but the unbound components can pass the membrane freely. Alternatively, proteins such as BSA have been used in stead of micelles to obtain similar enan-tioselective aggregates [71]. [Pg.145]

Fig. 5-17. Principle of micellar-enhanced ultrafiltration (MEUF). The d-enantiomer of a racemic mixture is preferentially bound to the micelles, which are retained by the membrane. The bulk containing the 1-enantiomer is separated through the membrane [72]. Fig. 5-17. Principle of micellar-enhanced ultrafiltration (MEUF). The d-enantiomer of a racemic mixture is preferentially bound to the micelles, which are retained by the membrane. The bulk containing the 1-enantiomer is separated through the membrane [72].
Photoinduced ET at liquid-liquid interfaces has been widely recognized as a model system for natural photosynthesis and heterogeneous photocatalysis [114-119]. One of the key aspects of photochemical reactions in these systems is that the efficiency of product separation can be enhanced by differences in solvation energy, diminishing the probability of a back electron-transfer process (see Fig. 11). For instance, Brugger and Gratzel reported that the efficiency of the photoreduction of the amphiphilic methyl viologen by Ru(bpy)3+ is effectively enhanced in the presence of cationic micelles formed by cetyltrimethylammonium chloride [120]. Flash photolysis studies indicated that while the kinetics of the photoinduced reaction,... [Pg.211]

Oheme and co-workers investigated335 in an aqueous micellar system the asymmetric hydrogenation of a-amino acid precursors using optically active rhodium-phosphine complexes. Surfactants of different types significantly enhance both activity and enantioselectivity provided that the concentration of the surfactants is above the critical micelle concentration. The application of amphiphilized polymers and polymerized micelles as surfactants facilitates the phase separation after the reaction. Table 2 shows selected hydrogenation results with and without amphiphiles and with amphiphilized polymers for the reaction in Scheme 61.335... [Pg.119]

In the micellar region the trend to decreasing colloid stability is arrested and a partial improvement, in line with the enhanced level of polymer adsorption, is noted until the conditions for gross phase separation are reached. Only the intermediate block copolymer BC 42 shows indications of discontinuities in behavior at the solvent composition for micelle formation. The results presented here do not show the sharp transition from stability to instability found experimentally (4,8,17) by Napper and generally expected on theoretical grounds. However, there are important differences in experimental methodology that must be emphasised. [Pg.315]

The unusual rate enhancement of nucleophiles in micelles is a function of two interdependent effects, the enhanced nucleophilicity of the bound anion and the concentration of the reactants. In bimolecular reactions, it is not always easy to estimate the true reactivity of the bound anion separately. Unimolecular reactions would be better probes of the environmental effect on the anionic reactivity than bimolecular reactions, since one need not take the proximity term into account. The decarboxylation of carboxylic acids would meet this requirement, for it is unimolecular, almost free from acid and base catalysis, and the rate constants are extremely solvent dependent (Straub and Bender, 1972). [Pg.464]

Effect of surfactant type and concentration An increase in surfactant concentration results in an increase in the number of micelles rather than any substantial change in size, and this enhances the capacity of the reverse micelle phase to solubilize proteins. Woll and Hatton [24] observed increasing protein solubilization in the reverse micelle phase with increasing surfactant concentration. In contrast, Jarudilokkul et al. [25] found that at low minimal concentrations (6-20 mmol dm AOT), reverse mieelles eould be highly seleetive in separating very similar proteins from... [Pg.664]

Micellar enhanced ultrafiltration (MEUF) is a recently proposed technique to separate dissolved organic compounds from aqueous streams [256-258]. In this process, surfactant is added to an aqueous stream containing organic solute for forming micelles in order to solubilize the target compound. The subsequent concentration and purification of the target compound is achieved by ultrafiltration by optimizing the process parameters [259-261]. [Pg.165]

In aqueous surfactant solutions, either by circumstance or design, non—surface active organic species may be present. Examples are oil recovery, where crude oil is present, or micellar—enhanced ultrafiltration, where micelles are being used to effect a separation of dissolved organic pollutants from water. The ability of mixed micelles to solubilize organic solutes has received relatively little study. In addition, the solubilization of these compounds by micelles may change the monomer—micelle equilibrium compositions. [Pg.330]

A related example, which simply utilizes the surface potential for charge separation, involves quenching of [Ru(bipy)3]2+ by PSV (see Section 61.5.4.2.3). Positively charged micelles or bilayers enhance the quantum yield for PSV formation over that in free solution by retaining it in the near surface layers of the micelle whilst expelling the positively charged [Ru(bipy)3]3+.328... [Pg.526]

Khaledi, M. G., J. K. Strasters, A. H. Rodgers, and E. D. Breyer. 1990. Simultaneous enhancement of separation selectivity and solvent strength in reversed-phase liquid chromatography using micelles in hydro-organic solvents nal. Chem62 130-136. [Pg.302]

Micellar electrokinetic capillary chromatography (MECC) is a mode of CE similar to CZE, in which surfactants (micelles) are added to the buffer system. Micellar solutions can be used to solubilize hydrophobic compounds that would otherwise be insoluble in water. In MECC the micelles are used to provide a reversed-phase character to the separation mechanism. Although MECC was originally developed for the separation of neutral species by capillary electrophoresis, it has also been shown to enhance resolution in the analysis of a variety of charged species.16... [Pg.161]

Spectroscopic methods can be used to specify the position of donors and acceptors before photoexcitation [50]. This spatial arrangement can obviously influence the equilibrium eomplexation in charge transfer complexes, and hence, the optical transitions accessible to such species [51]. This ordered environment also allows for effective separation of a sensitizing dye from the location of subsequent chemical reactions [52], For example, the efficiency of cis-trans isomerization of A -methyl-4-(p-styryl)pyridinium halides via electron transfer sensitization by Ru(bpy) + was markedly enhanced in the presence of anionic surfactants (about 100-fold) [53], The authors postulate the operation of an electron-relay chain on the anionic surface for the sensitization of ions attached electrostatically. High adsorptivity of the salt on the anionic micelle could also be adduced from salt effects [53, 54]. The micellar order also influenced the attainable electron transfer rates for intramolecular and intermolecular reactions of analogous molecules (pyrene-viologen and pyrene-ferrocene) solubilized within a cationic micelle because the difference in location of the solubilized substances affects the effective distance separating the units [55]. [Pg.86]


See other pages where Micelles micelle-enhanced separation is mentioned: [Pg.56]    [Pg.62]    [Pg.47]    [Pg.190]    [Pg.619]    [Pg.24]    [Pg.26]    [Pg.229]    [Pg.2061]    [Pg.484]    [Pg.525]    [Pg.150]    [Pg.108]    [Pg.426]    [Pg.269]    [Pg.333]    [Pg.37]    [Pg.214]    [Pg.205]    [Pg.229]    [Pg.546]    [Pg.189]    [Pg.144]    [Pg.87]    [Pg.179]    [Pg.241]    [Pg.28]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Separation enhancement

© 2024 chempedia.info