Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

3- methyl chloride, alkylation

Mannich polyacrylamides can react with alkylating agents such as methyl chloride [74-87-3], CH Cl, methyl bromide [74-83-9], CH Br, and dimethyl... [Pg.140]

Alkyltin Intermedia.tes, For the most part, organotin stabilizers are produced commercially from the respective alkyl tin chloride intermediates. There are several processes used to manufacture these intermediates. The desired ratio of monoalkyl tin trichloride to dialkyltin dichloride is generally achieved by a redistribution reaction involving a second-step reaction with stannic chloride (tin(IV) chloride). By far, the most easily synthesized alkyltin chloride intermediates are the methyltin chlorides because methyl chloride reacts directiy with tin metal in the presence of a catalyst to form dimethyl tin dichloride cleanly in high yields (21). Coaddition of stannic chloride to the reactor leads directiy to almost any desired mixture of mono- and dimethyl tin chloride intermediates ... [Pg.547]

Koch Chemical Company is the only U.S. suppHer of all PMBs (except hexamethylbenzene). Its process has the flexibility of producing isodurene, prehnitene, and pentamethylbenzene, should a market develop. Koch s primary process (20) is based on isomerization, alkylation, and disproportionation conducted in the presence of a Friedel-Crafts catalyst. For the synthesis of mesitylene and hemimellitene, pseudocumene is isomerized. If durene, isodurene, or prehnitene and pentamethylbenzene are desired, pseudocumene is alkylated with methyl chloride (see Alkylation Friedel-CRAFTSreactions). [Pg.506]

QuaterniZation. Quaternary ammonium compounds are formed by alkylation of alkyl, alkyl dimethyl, dialkyl, and dialkylmethyl fatty amines with methyl chloride, dimethyl sulfate, or benzyl chloride (1,3,7,12,29). [Pg.219]

Quaternary Salts. Herbicides paraquat (20) and diquat (59) are the quaternary salts of 4,4 -bipyridine (19) and 2,2 -bipyridine with methyl chloride and 1,2-dibromoethane, respectively. Higher alkylpyridinium salts are used in the textile industry as dye ancillaries and spin bath additives. The higher alkylpyridinium salt, hexadecylpytidinium chloride [123-03-5] (67) (cetylpyridinium chloride) is a topical antiseptic. Amprolium (62), a quaternary salt of a-picohne (2), is a coccidiostat. Bisaryl salts of butylpyridinium bromide (or its lower 1-alkyl homologues) with aluminum chloride have been used as battery electrolytes (84), in aluminum electroplating baths (85), as Friedel-Crafts catalysts (86), and for the formylation of toluene by carbon monoxide (87) (see QuaternaryAA ONiUM compounds). [Pg.336]

Many organic hahdes, especially alkyl bromides and iodides, react direcdy with tin metal at elevated temperatures (>150° C). Methyl chloride reacts with molten tin metal, giving good yields of dimethyl tin dichloride, which is an important intermediate in the manufacture of dimethyl tin-ha sed PVC stabilizers. The presence of catalytic metallic impurities, eg, copper and zinc, is necessary to achieve optimum yields (108) ... [Pg.72]

MethylceUulose is made by reaction of alkaU ceUulose with methyl chloride until the DS reaches 1.1—2.2. HydroxypropyhnethylceUulose [9004-65-3], the most common of this family of products, is made by using propylene oxide in addition to methyl chloride in the reaction MS values of the hydroxypropyl group in commercial products are 0.02—0.3. Use of 1,2-butylene oxide in the alkylation reaction mixture gives hydroxybutyhnethylceUulose [9041-56-9, 37228-15-2] (MS 0.04—0.11). HydroxyethyhnethylceUulose [903242-2] is made with ethylene oxide in the reaction mixture. [Pg.489]

The reaction is carried out by first reacting the alkyl or aryl halide with magnesium shavings in an ether suspension and then treating with silicon tetrachloride (prepared by passing chlorine over heated silicon). With methyl chloride the following sequence of reactions occur ... [Pg.818]

The direct process is less flexible than the Grignard process and is restricted primarily to the production of the, nevertheless all-important, methyl- and phenyl-chlorosilanes. The main reason for this is that higher alkyl halides than methyl chloride decompose at the reaction temperature and give poor yields of the desired products and also the fact that the copper catalyst is only really effective with methyl chloride. [Pg.819]

Scheme 5.1-49 The alkylation of benzene with methyl chloride or n-propyl chloride in an ionic liquid. Scheme 5.1-49 The alkylation of benzene with methyl chloride or n-propyl chloride in an ionic liquid.
The utility of thallium(III) salts as oxidants for nonaromatic unsaturated systems is a consequence of the thermal and solvolytic instability of mono-alkylthallium(III) compounds, which in turn is apparently dependent on two major factors, namely, the nature of the associated anion and the structure of the alkyl group. Compounds in which the anion is a good bidentate ligand are moderately stable, for example, alkylthallium dicar-boxylates 74, 75) or bis dithiocarbamates (76). Alkylthallium dihalides, on the other hand, are extremely unstable and generally decompose instantly. Methylthallium diacetate, for example, can readily be prepared by the exchange reaction shown in Eq. (11) it is reasonably stable in the solid state, but decomposes slowly in solution and rapidly on being heated [Eq. (23)]. Treatment with chloride ion results in the immediate formation of methyl chloride and thallium(I) chloride [Eq. (24)] (55). These facts can be accommodated on the basis that the dicarboxylates are dimeric while the... [Pg.174]

Alkylation of the metallated bis(triphenylphosphinyl)methane (6) with benzyl or methyl chlorides occurred on phosphorus to give the ylides (7). That from benzyl chloride reacted with chlorodiphenylphosphine to give the stable ylide (8). [Pg.151]

Transformations through 1,2-addition to a formal PN double bond within the delocalized rc-electron system have been reported for the benzo-l,3,2-diazaphospholes 5 which are readily produced by thermally induced depolymerization of tetramers 6 [13] (Scheme 2). The monomers react further with mono- or difunctional acyl chlorides to give 2-chloro-l,3,2-diazaphospholenes with exocyclic amide functionalities at one nitrogen atom [34], Similar reactions of 6 with methyl triflate were found to proceed even at room temperature to give l-methyl-3-alkyl-benzo-l,3,2-diazaphospholenium triflates [35, 36], The reported butyl halide elimination from NHP precursor 13 to generate 1,3,2-diazaphosphole 14 upon heating to 250°C and the subsequent amine addition to furnish 15 (Scheme 5) illustrates another example of the reversibility of addition-elimination reactions [37],... [Pg.71]

Dimethyltin dichloride can be synthesized from methyl chloride, tin(II) chloride and molten tin. The reaction proceeds in high yields in NaAlCLt melt359. High yields in tri-organotin halides are also obtained from tin and lower alkyl halides, provided an equimolar amount of halide is added to the reaction medium360. [Pg.514]

Polymerisations in alkyl chlorides. In Figure 3 of Reference 43 it was shown that the DP of the polymers at first increased with monomer concentration, and then fell off steeply to a quite low value characteristic of the polymerisation of undiluted monomer. The exact nature of the diluent ( alkyl halide ) and catalyst were not disclosed, but it is now known that the diluent was methyl chloride and the catalyst aluminium chloride. Kennedy and Thomas have investigated in some detail this interesting phenomenon [56] Experiments were carried out at -78° in a dry-box To 7.1 g of isobutene and the appropriate quantity... [Pg.67]

The experiment with CS2 showed up another extremely interesting effect. Over almost the whole range of compositions the DPs obtained were very significantly greater than those obtained without carbon bisulphide - with methyl chloride as sole diluent. This CS2 effect has been reported previously for the cationic polymerisation of a-methylstyrene [57] and of isobutene [50]. It seems likely that it is due (at least partly) to the fact that CS2 does not act as a transfer agent, whereas most alkyl halides do. [Pg.69]

From the radioactivity of the polymer and of the original methyl chloride it was found that if there was not more than one 14C atom per polymer molecule, 0.27 of the polymer molecules contained a methyl group derived from the solvent. The authors concluded that the formation of this fraction of molecules had been started by initiation according to equation 10, and that the remainder had been started by transfer with monomer. It has been admitted by the authors (private communication, and in press) that this conclusion is not warranted on this evidence, since alkyl halides such as methyl chloride, are known to act as transfer agents by a reaction which can be represented by Equation 7. At best, the evidence shows that methyl chloride was involved in starting - by initiation and/or transfer - about a quarter of the polymer molecules. The results of further studies with 14CH3C1 and CH336C1 are in process of publication [12]. [Pg.71]

The alkyl halides C H2n+1Cl (Br, I) are colourless and usually liquid methyl chloride, methyl bromide, and also ethyl chloride, are gaseous at ordinary temperatures and the members of high molecular weight, such as cetyl iodide C16H22I, are semi-solid, paste-like masses. [Pg.98]

Catalytic asymmetric methylation of 6,7-dichloro-5-methoxy-2-phenyl-l-indanone with methyl chloride in 50% sodium hydroxide/toluene using M-(p-trifluoro-methylbenzyDcinchoninium bromide as chiral phase transfer catalyst produces (S)-(+)-6,7-dichloro-5-methoxy-2-methyl-2--phenyl-l-indanone in 94% ee and 95% yield. Under similar conditions, via an asymmetric modification of the Robinson annulation enqploying 1,3-dichloro-2-butene (Wichterle reagent) as a methyl vinyl ketone surrogate, 6,7 dichloro-5-methoxy 2-propyl-l-indanone is alkylated to (S)-(+)-6,7-dichloro-2-(3-chloro-2-butenyl)-2,3 dihydroxy-5-methoxy-2-propyl-l-inden-l-one in 92% ee and 99% yield. Kinetic and mechanistic studies provide evidence for an intermediate dimeric catalyst species and subsequent formation of a tight ion pair between catalyst and substrate. [Pg.67]

Devulcanization in the Presence of Benzyl Chloride and Methyl Chloride. The above results suggest that catalyst efficiency might be improved when devulcanization is carried out with added alkylating agent. We find that this is, indeed, the case. Added benzyl chloride or methyl chloride further decreases the crosslink density for a given concentration of catalyst (Table 11). However, 1- and 2-chlorobutanes appear to be ineffective, possibly because of dehydrochlorination. [Pg.161]

Mercury alkyls are readily obtained by the actions of Grignard reagents (magnesium alkyl halides) on mercury(II) chloride. Thus, mercury dimethyl is made from magnesium methyl chloride and mercury(II) chloride ... [Pg.570]

DDD Dichloro(chlorophenyl)-bis Ethane DDE Dichlorodiphenyldichloroethylene Dichlorobenzene, 1,2 Dichlorobenzene, 1,3 Dichlorobenzene, 1,4 Hexachlorobenzene Polychlorinated Benzenes Polychlorinated Biphenyls PCBs Aroclor Ring-Substituted Aromatics Tetrachlorobenzene Trichlorobenzene, 1,2,4 Saturated Alkyl Halides Bromodichloromethane Bromoform Tribromomethane Butyl Chloride Chlorobutane Carbon Tetrachloride Carbon Tetrafluoride Chloroform Trichloromethane Chloromethane Methyl Chloride Dibromochloromethane Dibromoethane, 1,2 Ethylene Dibromide Dibromomethane... [Pg.8]

Chlorobenzene Monochlorobenzene under Ring-Substituted Aromatics Chloroform Tiichloromethane under Saturated Alkyl HaUdes Chloromethane Methyl Chloride under Saturated Alkyl Halides Chlorophenol under Halophenols Chlorotoluene, 2 under Ring-Substituted Aromatics... [Pg.1266]


See other pages where 3- methyl chloride, alkylation is mentioned: [Pg.1051]    [Pg.509]    [Pg.507]    [Pg.380]    [Pg.475]    [Pg.481]    [Pg.482]    [Pg.198]    [Pg.499]    [Pg.388]    [Pg.427]    [Pg.251]    [Pg.104]    [Pg.39]    [Pg.418]    [Pg.69]    [Pg.408]    [Pg.495]    [Pg.168]    [Pg.165]    [Pg.255]    [Pg.45]    [Pg.276]    [Pg.170]    [Pg.311]    [Pg.175]   


SEARCH



Alkyl chloride alkylation

Alkyl chlorides

Alkyl-methyl

Methyl chlorid

Methyl chloride

© 2024 chempedia.info