Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead reactor

If the lead reactor were acting as an ideal CSTR, the conversion would be... [Pg.899]

Light-Lead [Reactor]. TM for lead-lined polyethylene shielding bricks. Weight of one brick is 7 pounds. [Pg.755]

Theoretically, the increase of sulfur vapors to the first reactor would reduce conversion. In practice, a small shift in the reactor temperature rise from the lead reactor to the second and third reactors was noted. The theoretical reduction in conversion was too small to observe with a Drager tube analysis of the sulfur plant tail gas. [Pg.341]

Two additional projects, being developed with private funding for specific market applications, are appropriate to consider as representatives of future directions and trends. These two projects are the LFR-AS-200 project being developed by Hydromine, Inc., and the Swedish Advanced Lead Reactor (SEALER) reactor project being developed by LeadCold Reactors Inc. The descriptions below are based on private communications for these ongoing development efforts and are intended to illustrate the continuing process of innovation that is characteristic of current and future trends in LFR technology. [Pg.143]

Figure 1.5 A different reactor design leads not only to a different separation system but also to additional possibilities for heat integration. (From Smith and Linnhoff, Trans. IChemE, ChERD, 66 195, 1988 reproduced by permission of the Institution of Chemical Engineers.)... Figure 1.5 A different reactor design leads not only to a different separation system but also to additional possibilities for heat integration. (From Smith and Linnhoff, Trans. IChemE, ChERD, 66 195, 1988 reproduced by permission of the Institution of Chemical Engineers.)...
Since process design starts with the reactor, the first decisions are those which lead to the choice of reactor. These decisions are among the most important in the whole design. Good reactor performance is of paramount importance in determining the economic viability of the overall design and fundamentally important to the environmental impact of the process. In addition to the desired products, reactors produce unwanted byproducts. These unwanted byproducts create environmental problems. As we shall discuss later in Chap. 10, the best solution to environmental problems is not elaborate treatment methods but not to produce waste in the first place. [Pg.15]

In the second model (Fig. 2.16) the continuous well-stirred model, feed and product takeoff are continuous, and the reactor contents are assumed to he perfectly mixed. This leads to uniform composition and temperature throughout. Because of the perfect mixing, a fluid element can leave at the instant it enters the reactor or stay for an extended period. The residence time of individual fluid elements in the reactor varies. [Pg.29]

Temperature control. Let us now consider temperature control of the reactor. In the first instance, adiabatic operation of the reactor should be considered, since this leads to the simplest and cheapest reactor design. If adiabatic operation produces an unacceptable rise in temperature for exothermic reactions or an unacceptable fall in temperature for endothermic reactions, this can be dealt with in a number of ways ... [Pg.42]

Clearly, in the liquid phase much higher concentrations of Cfeed (kmol m ) can be maintained than in the gas phase. This makes liquid-phase reactions in general more rapid and hence leads to smaller reactor volumes for liquid-phase reactors. [Pg.45]

The performance of fluidized-bed reactors is not approximated by either the well-stirred or plug-flow idealized models. The solid phase tends to be well-mixed, but the bubbles lead to the gas phase having a poorer performance than well mixed. Overall, the performance of a fluidized-bed reactor often lies somewhere between the well-stirred and plug-flow models. [Pg.58]

It is easy to say that operation of a reactor at higher temperature might lead to a safer plant if the inventory can be reduced as a result, but how do we assess such changes quantitatively Lowering the inventory makes the plant safer, but raising the temperature makes it less safe. Which effect is more significant ... [Pg.268]

Reactors at nonoptimal conditions produce (additional) unwanted byproducts. Not only might this lead to loss of material through additional byproduct formation, but it also might prevent the recycling of material produced during the start-up. [Pg.289]

Adiabatic operation. If adiabatic operation leads to an acceptable temperature rise for exothermic reactors or an acceptable fall for endothermic reactors, then this is the option normally chosen. If this is the case, then the feed stream to the reactor requires heating and the efiluent stream requires cooling. The heat integration characteristics are thus a cold stream (the reactor feed) and a hot stream (the reactor efiluent). The heat of reaction appears as elevated temperature of the efiluent stream in the case of exothermic reaction or reduced temperature in the case of endothermic reaction. [Pg.325]

Another important reaction supporting nonlinear behaviour is the so-called FIS system, which involves a modification of the iodate-sulfite (Landolt) system by addition of ferrocyanide ion. The Landolt system alone supports bistability in a CSTR the addition of an extra feedback chaimel leads to an oscillatory system in a flow reactor. (This is a general and powerfiil technique, exploiting a feature known as the cross-shaped diagram , that has led to the design of the majority of known solution-phase oscillatory systems in flow... [Pg.1103]

The metal is very effective as a sound absorber, is used as a radiation shield around X-ray equipment and nuclear reactors, and is used to absorb vibration. White lead, the basic carbonate, sublimed white lead, chrome yellow, and other lead compounds are used extensively in paints, although in recent years the use of lead in paints has been drastically curtailed to eliminate or reduce health hazards. [Pg.86]

One of the most significant sources of change in isotope ratios is caused by the small mass differences between isotopes and their effects on the physical properties of elements and compounds. For example, ordinary water (mostly Ej O) has a lower density, lower boiling point, and higher vapor pressure than does heavy water (mostly H2 0). Other major changes can occur through exchange processes. Such physical and kinetic differences lead to natural local fractionation of isotopes. Artificial fractionation (enrichment or depletion) of uranium isotopes is the basis for construction of atomic bombs, nuclear power reactors, and depleted uranium weapons. [Pg.353]

If necessary, first-stage reactor effluent maybe further cooled to 200—250°C by an iaterstage cooler to prevent homogeneous and unselective oxidation of acroleia taking place in the pipes leading to the second-stage reactor (56,59). [Pg.153]

A typical flow diagram for pentaerythritol production is shown in Figure 2. The main concern in mixing is to avoid loss of temperature control in this exothermic reaction, which can lead to excessive by-product formation and/or reduced yields of pentaerythritol (55,58,59). The reaction time depends on the reaction temperature and may vary from about 0.5 to 4 h at final temperatures of about 65 and 35°C, respectively. The reactor product, neutralized with acetic or formic acid, is then stripped of excess formaldehyde and water to produce a highly concentrated solution of pentaerythritol reaction products. This is then cooled under carefully controlled crystallization conditions so that the crystals can be readily separated from the Hquors by subsequent filtration. [Pg.465]

Sodium fluoride is normally manufactured by the reaction of hydrofluoric acid and soda ash (sodium carbonate), or caustic soda (sodium hydroxide). Control of pH is essential and proper agitation necessary to obtain the desired crystal size. The crystals are centrifuged, dried, sized, and packaged. Reactors are usually constmcted of carbon brick and lead-lined steel, with process lines of stainless, plastic or plastic-lined steel diaphragm, plug cock, or butterfly valves are preferred. [Pg.237]

A reactor system is shown in Figure 2 to which the HAZOP procedure can be appHed. This reaction is exothermic, and a cooling system is provided to remove the excess energy of reaction. If the cooling flow is intermpted, the reactor temperature increases, leading to an increase in the reaction rate and the heat generation rate. The result could be a mnaway reaction with a subsequent increase in the vessel pressure possibly leading to a mpture of the vessel. [Pg.471]

Alkyltin Intermedia.tes, For the most part, organotin stabilizers are produced commercially from the respective alkyl tin chloride intermediates. There are several processes used to manufacture these intermediates. The desired ratio of monoalkyl tin trichloride to dialkyltin dichloride is generally achieved by a redistribution reaction involving a second-step reaction with stannic chloride (tin(IV) chloride). By far, the most easily synthesized alkyltin chloride intermediates are the methyltin chlorides because methyl chloride reacts directiy with tin metal in the presence of a catalyst to form dimethyl tin dichloride cleanly in high yields (21). Coaddition of stannic chloride to the reactor leads directiy to almost any desired mixture of mono- and dimethyl tin chloride intermediates ... [Pg.547]


See other pages where Lead reactor is mentioned: [Pg.224]    [Pg.53]    [Pg.549]    [Pg.164]    [Pg.390]    [Pg.374]    [Pg.148]    [Pg.152]    [Pg.51]    [Pg.224]    [Pg.53]    [Pg.549]    [Pg.164]    [Pg.390]    [Pg.374]    [Pg.148]    [Pg.152]    [Pg.51]    [Pg.8]    [Pg.48]    [Pg.245]    [Pg.276]    [Pg.1099]    [Pg.3064]    [Pg.123]    [Pg.157]    [Pg.261]    [Pg.418]    [Pg.83]    [Pg.275]    [Pg.155]    [Pg.155]    [Pg.184]    [Pg.472]    [Pg.475]   
See also in sourсe #XX -- [ Pg.549 ]




SEARCH



Advanced Lead Fast Reactor European

Advanced Lead Fast Reactor European Demonstrator

China LEad Alloy-cooled Reactor

European Lead Fast Reactor

European Lead-Cooled Fast Reactor

Lead bath reactor

Lead fast reactor

Lead-Cooled Fast Reactor System

Lead-Cooled Fast Reactor—Amphora

Lead-cooled European Advanced DEmonstration Reactor

Lead-cooled fast reactor

Lead-cooled fast reactor development

Lead-cooled fast reactors advantages

Lead-cooled fast reactors coolants

Lead-cooled fast reactors designs

Lead-walled reactors

Lead—Bismuth Fast Reactor

Swedish Advanced Lead Reactor

© 2024 chempedia.info