Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metalation synthetic applications

When a mixture of alkenes 1 and 2 or an unsymmetrically substituted alkene 3 is treated with an appropriate transition-metal catalyst, a mixture of products (including fi/Z-isomers) from apparent interchange of alkylidene moieties is obtained by a process called alkene metathesis. With the development of new catalysts in recent years, alkene metathesis has become a useful synthetic method. Special synthetic applications are, for example, ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROM) (see below). [Pg.10]

The synthetic applicability is rather limited, due to the various side-reactions observed, such as eliminations and rearrangement reactions. The attempted coupling of two different alkyl halides in order to obtain an unsymmetrical hydrocarbon, usually gives the desired product in only low yield. However the coupling reaction of an aryl halide with an alkyl halide upon treatment with a metal (the Wurtz-Fittig reaction) often proceeds with high yield. The coupling of two aryl halides usually does not occur under those conditions (see however below ) since the aryl halides are less reactive. [Pg.305]

There are three types of electron transfers, firstly the generation of an electron electrochemically, by y-irradiation, or by photolytic dissociation, secondly the transfer of an electron from an inorganic or organic compound, referred to as a nucleophilic homolytic leaving group (Zollinger, 1973 a), and thirdly a transfer from a transition metal or transition metal ion complex. In this section we will discuss the fundamental aspects of these three types. In the following sections and in Chapter 10, specific examples and synthetic applications will be summarized. [Pg.190]

For a review of the synthetic applications of metalation hy Grignard reagents at positions other than at triple bonds, see Blagoev, B. Ivanov, D. Synthesis, 1970, 615. [Pg.834]

Propiolaldehyde diethyl acetal has found numerous synthetic applications in the literature which may be briefly summarized. The compound has been utilized in the synthesis of unsaturated and polyunsaturated acetals and aldehydes by alkylation of metal-lated derivatives, " by Cadiot-Chodkiewicz coupling with halo acetylenes, " and by reaction with organocuprates. Syntheses of heterocyclic compounds including pyrazoles, isoxazoles, triazoles, and pyrimidines have employed this three-carbon building block. Propiolaldehyde diethyl acetal has also been put to use in the synthesis of such natural products as polyacetylenes " and steroids. ... [Pg.8]

Most of the synthetic applications of organomercury compounds are in transition metal-catalyzed processes in which the organic substituent is transferred from mercury to the transition metal in the course of the reaction. Examples of this type of reaction... [Pg.663]

In synthetic applications, Li et al. examined the propargylation-allenylation of carbonyl compounds by using a variety of metals including Sn, Zn, Bi, Cd, and In.203 By using the indium-mediated allenylation reaction, Li and co-workers developed the synthesis of the antiviral, antitumor compound (+)-goniofufurone (Scheme 8.22),204 a key component isolated from the Asian trees of the genus Goniothalamus,205 and other styryl lactone derivatives (Eq. 8.80). [Pg.258]

Aromatic nitro compounds undergo nucleophilic aromatic substitutions with various nucleophiles. In 1991 Terrier s book covered (1) SNAr reactions, mechanistic aspects (2) structure and reactivity of anionic o-complexes (3) synthetic aspects of intermolecular SNAr substitutions (4) intramolecular SNAr reactions (5) vicarious nucleophilic substitutions of hydrogen (VNS) (6) nucleophilic aromatic photo-substitutions and (7) radical nucleophilic aromatic substitutions. This chapter describes the recent development in synthetic application of SNAr and especially VNS. The environmentally friendly chemical processes are highly required in modem chemical industry. VNS reaction is an ideal process to introduce functional groups into aromatic rings because hydrogen can be substituted by nucleophiles without the need of metal catalysts. [Pg.302]

Alkali metal boratabenzenes have a wide synthetic applicability just like alkali metal cyclopentadienides. Two syntheses have been developed Ashe s synthesis via organotin intermediates (23) and our cyanide degradation of bis (boratabenzene) cobalt complexes (61). [Pg.217]

The purpose of this chapter will be to serve as a critical introduction to the nature and origin of the chemical effects of ultrasound. We will focus on organo-transition metal sonochemistry as a case study. There will be no attempt to be comprehensive, since recent, exhaustive reviews on both organometallic sonochemistry Q) and the synthetic applications of ultrasound (2) have been published, and a full monograph on the chemical, physical and biological effects of ultrasound is in press (3). [Pg.195]

The reduction of organic halides is of practical importance for the treatment of effluents containing toxic organic halides and also for valuable synthetic applications. Direct electroreduction of alkyl and aryl halides is a kinetically slow process that requires high overpotentials. Their electrochemical activation is best achieved by use of electrochemically generated low-valent transition metal catalysts. Electrocatalytic coupling reactions of organic halides were reviewed in 1997.202... [Pg.485]

The pressure is measured by means of a hydraulic system, either in one reference vessel of the 16-vessel rotor or simultaneously for all vessels of the 8-vessel rotor. The operational limit is 86 bar, sufficient for synthetic applications. In addition, a pressure rate limit is set to 3.0 bar s 1 by the control software provided. Protection against sudden pressure peaks is provided by metal safety disks incorporated into the vessel caps (safety limits of 70 bar or 120 bar, respectively) and by software regulations, depending on the rotor used and the vessel type. [Pg.46]

Additional applications of this technology for rapid lead discovery and lead optimization have been reported [87, 90-93]. It should also be noted that a variety of chemical transformations, in particular in the area of transition-metal catalyzed reactions, have been performed with this or related equipment (Chapt. 11) [25]. Other monomode microwave reactors using related concepts to introduce high-throughput were recently introduced by CEM Corp. (Discover or Explorer line of products, Fig. 12.7.) [81]. At the time of writing this review no published synthetic applications using this microwave reactor were available. [Pg.429]

Only the general pattern of these reactions is described. In many cases the actual course of a reaction has not been elucidated, but for our purposes, the general schemes which are presented offer the opportunity to consider synthetic applications from a unified point of view. The schemes are broad in nature and possibly include some reactions still to be found. Examples illustrating the schemes do not cover the entire subject. They have been selected to provide evidence for the extensive nature of the field, particularly in the synthesis of natural products or of unusual molecules. Reactions leading to metal complexes and not to organic products have been excluded. Reactions occurring under mild conditions are naturally preferred. Reported yields, and the complexes employed, refer to the underlined references cited in the tables. [Pg.197]

Major advancements in the chemistry of pyrazoles, imidazoles, triazoles, tetrazoles, and related fused heterocyclic derivatives continued in 2000. Solid-phase combinatorial chemistry of pyrazoles and benzimidazoles has been particularly active. Synthetic routes to all areas continue to be pursued vigorously with improvements and applications. Notably, metal-promoted and cross-coupling reactions of all classes seemed to be a dominant theme in 2000. Applications of pyrazole-, imidazole-, and 1,2,3-benzotriazole-containing reagents to a wide array of synthetic applications remained active. [Pg.167]

Various transition metal complexes, in particular of late transition metals, were reported to be effective catalysts for such double bond isomerization. Because organic synthesis is the focus of this volume, this section will cover the transition metal-catalyzed isomerization of alkenes, which has the significant synthetic and industrial utilities. This chapter will also include the synthetic application, asymmetric reactions,4-6 and isomerization of alkynes, in particular, that of propargylic alcohols. [Pg.71]

However, because of the mostly very slow electron transfer rate between the redox active protein and the anode, mediators have to be introduced to shuttle the electrons between the enzyme and the electrode effectively (indirect electrochemical procedure). As published in many papers, the direct electron transfer between the protein and an electrode can be accelerated by the application of promoters which are adsorbed at the electrode surface [27], However, this type of electrode modification, which is quite useful for analytical studies of the enzymes or for sensor applications is in most cases not stable and effective enough for long-term synthetic application. Therefore, soluble redox mediators such as ferrocene derivatives, quinoid compounds or other transition metal complexes are more appropriate for this purpose. [Pg.96]

Schmidt AM, Eilbracht P (2004) New Synthetic Applications of Tandem Reactions under Eiydroformylation Conditions. In Beller M, Bolm C (eds) Transition Metals for Organic Synthesis Building Blocks and Fine Chemicals. Wiley, Weinheim, p 57... [Pg.103]


See other pages where Metalation synthetic applications is mentioned: [Pg.213]    [Pg.184]    [Pg.100]    [Pg.221]    [Pg.285]    [Pg.2]    [Pg.95]    [Pg.107]    [Pg.650]    [Pg.663]    [Pg.1335]    [Pg.45]    [Pg.81]    [Pg.137]    [Pg.207]    [Pg.550]    [Pg.4]    [Pg.17]    [Pg.462]    [Pg.907]    [Pg.101]    [Pg.727]    [Pg.734]    [Pg.540]    [Pg.86]    [Pg.154]    [Pg.390]    [Pg.435]    [Pg.518]    [Pg.59]    [Pg.493]   
See also in sourсe #XX -- [ Pg.375 , Pg.376 ]




SEARCH



Arene-metal complexes Organic synthetic applications

Directed metalation synthetic applications

Metal applications

Metal-allyl complexes Synthetic applications

Synthetic Applications of Other Transition Metals

Synthetic applications

Synthetic metals

© 2024 chempedia.info