Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali metal boratabenzenes

Alkali metal boratabenzenes have a wide synthetic applicability just like alkali metal cyclopentadienides. Two syntheses have been developed Ashe s synthesis via organotin intermediates (23) and our cyanide degradation of bis (boratabenzene) cobalt complexes (61). [Pg.217]

Alkali metal boratabenzenes may be liberated from bis (boratabenzene) cobalt complexes 7 and 13 by reductive degradation with elemental Li, sodium amalgam, or Na/K alloy (60), or alternatively by degradation with cyanides (61). The latter method has been developed in detail (Scheme 4). It produces spectroscopically pure ( H-NMR control) solutions of the products 26 the excess alkali metal cyanide and the undefined cyanocobalt compounds produced are essentially insoluble in acetonitrile. [Pg.218]

Simple transition metal halides react cleanly with alkali metal boratabenzenes. In this way sandwich-type complexes 32 of V (27), Cr (64), Fe (58), Ru (61), and Os (61) have been made. The corresponding nickel complexes seem to be nonexistent, quite in contrast to NiCp2 in attempted preparations, mixtures of diamagnetic C—C linked dimers were obtained (29). In the manganese case, high sensitivity to air and water has precluded preparative success until now. Some organometallic halides have added further variations to the main theme. The complexes 33 of Rh and 34 of Pt were obtained from [(COD)RhCl]2 and [Me3PtI]4, respectively (61). [Pg.219]

On treatment with T1C1, alkali metal boratabenzenes afford the corresponding T1 compounds (51). The lower reactivity of these can be essential for some syntheses. Some of the rare cationic borabenzene complexes 35-37 could be made using thallium boratabenzenes as reagents. Similarly, (C4Me4)Co(CO)2I yielded the mixed sandwich complexes 38 and 39 in excellent yields (71). [Pg.219]

Reaction of the same neutral borabenzene-ligand adduct, C5H5B-PMe3, with a transition, rather than an alkali, metal alkyl or amide can furnish r 6-boratabenzene complexes in a single step (Scheme 8).17 This efficient transformation presumably proceeds through initial ir-coordination of CsHsB-PMes to the transition metal, followedby an intramolecular substitution reaction. In contrast to other approaches to the synthesis of T 6-boratabenzene complexes, this synthetic route does not have a parallel in if-cyclopentadienyl chemistry. [Pg.105]


See other pages where Alkali metal boratabenzenes is mentioned: [Pg.107]    [Pg.199]    [Pg.209]    [Pg.217]    [Pg.156]    [Pg.107]    [Pg.199]    [Pg.209]    [Pg.217]    [Pg.156]    [Pg.227]    [Pg.94]   


SEARCH



1 - boratabenzene

Boratabenzenes

© 2024 chempedia.info