Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox soluble

Selection of an appropriate redox potential or using redox soluble mediators or redox polymers (see Sect. 7)... [Pg.205]

Aoki K, Morita M, Niwa O, Tabei H (1988) Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. J Electroanal Chem 256 269-282... [Pg.335]

Guldi D M, Hungerbuhler H and Asmus K-D 1995 Unusual redox behavior of a water soluble malonio aoid derivative of Cgg evidenoe for possible oluster formation J. Phys. Chem. 99 13 487-93... [Pg.2432]

The redox properties have already been considered. A number of reactions of soluble (alkali metal) sulphites are noteworthy ... [Pg.294]

The most important types of reactions are precipitation reactions, acid-base reactions, metal-ligand complexation reactions, and redox reactions. In a precipitation reaction two or more soluble species combine to produce an insoluble product called a precipitate. The equilibrium properties of a precipitation reaction are described by a solubility product. [Pg.175]

Water-soluble peroxide salts, such as ammonium or sodium persulfate, are the usual initiators. The initiating species is the sulfate radical anion generated from either the thermal or redox cleavage of the persulfate anion. The thermal dissociation of the persulfate anion, which is a first-order process at constant temperature (106), can be greatly accelerated by the addition of certain reducing agents or small amounts of polyvalent metal salts, or both (87). By using redox initiator systems, rapid polymerizations are possible at much lower temperatures (25—60°C) than are practical with a thermally initiated system (75—90°C). [Pg.168]

The most common water-soluble initiators are ammonium persulfate, potassium persulfate, and hydrogen peroxide. These can be made to decompose by high temperature or through redox reactions. The latter method offers versatility in choosing the temperature of polymerization with —50 to 70°C possible. A typical redox system combines a persulfate with ferrous ion ... [Pg.25]

Catalyst Selection. The low resin viscosity and ambient temperature cure systems developed from peroxides have faciUtated the expansion of polyester resins on a commercial scale, using relatively simple fabrication techniques in open molds at ambient temperatures. The dominant catalyst systems used for ambient fabrication processes are based on metal (redox) promoters used in combination with hydroperoxides and peroxides commonly found in commercial MEKP and related perketones (13). Promoters such as styrene-soluble cobalt octoate undergo controlled reduction—oxidation (redox) reactions with MEKP that generate peroxy free radicals to initiate a controlled cross-linking reaction. [Pg.318]

The Lo-Cat process, Hcensed by US Filter Company, and Dow/Shell s SulFerox process are additional Hquid redox processes. These processes have replaced the vanadium oxidizing agents used in the Stretford process with iron. Organic chelating compounds are used to provide water-soluble organometaHic complexes in the solution. As in the case of Stretford units, the solution is regenerated by contact with air. [Pg.214]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]

Stannous Sulfate. Stannous sulfate (tin(Il) sulfate), mol wt 214.75, SnSO, is a white crystalline powder which decomposes above 360°C. Because of internal redox reactions and a residue of acid moisture, the commercial product tends to discolor and degrade at ca 60°C. It is soluble in concentrated sulfuric acid and in water (330 g/L at 25°C). The solubihty in sulfuric acid solutions decreases as the concentration of free sulfuric acid increases. Stannous sulfate can be prepared from the reaction of excess sulfuric acid (specific gravity 1.53) and granulated tin for several days at 100°C until the reaction has ceased. Stannous sulfate is extracted with water and the aqueous solution evaporates in vacuo. Methanol is used to remove excess acid. It is also prepared by reaction of stannous oxide and sulfuric acid and by the direct electrolysis of high grade tin metal in sulfuric acid solutions of moderate strength in cells with anion-exchange membranes (36). [Pg.66]

The requirements of a developer moiety for incorporation into a dye developer are well fulfilled by hydroquinones. Under neutral or acidic conditions hydroquinones are very weak reducing agents and the weakly acidic phenoHc groups confer tittle solubility. In alkali, however, hydroquinones are readily soluble, powerful developing agents. Dye developers containing hydroquinone moieties have solubility and redox characteristics in alkali related to those of the parent compounds. [Pg.487]

Emulsion Polymerization. In this method, polymerization is initiated by a water-soluble catalyst, eg, a persulfate or a redox system, within the micelles formed by an emulsifying agent (11). The choice of the emulsifier is important because acrylates are readily hydrolyzed under basic conditions (11). As a consequence, the commonly used salts of fatty acids (soaps) are preferably substituted by salts of long-chain sulfonic acids, since they operate well under neutral and acid conditions (12). After polymerization is complete the excess monomer is steam-stripped, and the polymer is coagulated with a salt solution the cmmbs are washed, dried, and finally baled. [Pg.474]

Simplified nitrile mbber polymerization recipes are shown in Table 2 for "cold" and "hot" polymerization. Typically, cold polymerization is carried out at 5°C and hot at 30°C. The original technology for emulsion polymerization was similar to the 30°C recipe, and the redox initiator system that allowed polymerization at lower temperature was developed shortiy after World War II. The latter uses a reducing agent to activate the hydroperoxide initiator and soluble iron to reactivate the system by a reduction—oxidation mechanism as the iron cycles between its ferrous and ferric states. [Pg.519]

Commercial chloroprene polymerization is most often carried out in aqueous emulsion using an anionic soap system. This technique provides a relatively concentrated polymerization mass having low viscosity and good transfer of the heat of polymerization. A water-soluble redox catalyst is normally used to provide high reaction rate at relatively low polymerization temperatures. [Pg.538]

Surface films are formed by corrosion on practically all commercial metals and consist of solid corrosion products (see area II in Fig. 2-2). It is essential for the protective action of these surface films that they be sufficiently thick and homogeneous to sustain the transport of the reaction products between metal and medium. With ferrous materials and many other metals, the surface films have a considerably higher conductivity for electrons than for ions. Thus the cathodic redox reaction according to Eq. (2-9) is considerably less restricted than it is by the transport of metal ions. The location of the cathodic partial reaction is not only the interface between the metal and the medium but also the interface between the film and medium, in which the reaction product OH is formed on the surface film and raises the pH. With most metals this reduces the solubility of the surface film (i.e., the passive state is stabilized). [Pg.139]

Organic peroxide-aromatic tertiary amine system is a well-known organic redox system 1]. The typical examples are benzoyl peroxide(BPO)-N,N-dimethylani-line(DMA) and BPO-DMT(N,N-dimethyl-p-toluidine) systems. The binary initiation system has been used in vinyl polymerization in dental acrylic resins and composite resins [2] and in bone cement [3]. Many papers have reported the initiation reaction of these systems for several decades, but the initiation mechanism is still not unified and in controversy [4,5]. Another kind of organic redox system consists of organic hydroperoxide and an aromatic tertiary amine system such as cumene hydroperoxide(CHP)-DMT is used in anaerobic adhesives [6]. Much less attention has been paid to this redox system and its initiation mechanism. A water-soluble peroxide such as persulfate and amine systems have been used in industrial aqueous solution and emulsion polymerization [7-10], yet the initiation mechanism has not been proposed in detail until recently [5]. In order to clarify the structural effect of peroxides and amines including functional monomers containing an amino group, a polymerizable amine, on the redox-initiated polymerization of vinyl monomers and its initiation mechanism, a series of studies have been carried out in our laboratory. [Pg.227]

Soluble sulfides (i.e., H S, HS" and S ", with sulfur at minus two oxidation state) are chemically very reactive. The two general types of soluble-sulfide reactions may be identified as precipitation reaction (type A) and redox reaction (type B). [Pg.1334]


See other pages where Redox soluble is mentioned: [Pg.212]    [Pg.212]    [Pg.223]    [Pg.351]    [Pg.23]    [Pg.474]    [Pg.350]    [Pg.36]    [Pg.318]    [Pg.439]    [Pg.439]    [Pg.40]    [Pg.45]    [Pg.271]    [Pg.390]    [Pg.439]    [Pg.464]    [Pg.465]    [Pg.524]    [Pg.13]    [Pg.215]    [Pg.493]    [Pg.506]    [Pg.358]    [Pg.207]    [Pg.317]    [Pg.424]    [Pg.853]    [Pg.1271]    [Pg.67]    [Pg.68]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



© 2024 chempedia.info