Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-solution interface molecular approach

More recently, the curvature at air/solution interfaces has been accounted for by Nikitas and Pappa-Louisi98 in terms of a specific molecular model that predicts a linear dependence of (lM/ ) on (1/0). The same model also reproduces the behavior at metal/solution interfaces, specifically Hg electrodes, for which most of the experimental data exist. Nikitas treatment provides a method for an unambiguous extrapolation of the adsorption potential shift to 0= 1. However, the interpretation of the results is subject to the difficulties outlined above. Nikitas approach does provide... [Pg.29]

Two main approaches to the investigation of the metal/solution interface can be distinguished molecular and thermodynamic. In the first... [Pg.2]

Macroscopic experiments allow determination of the capacitances, potentials, and binding constants by fitting titration data to a particular model of the surface complexation reaction [105,106,110-121] however, this approach does not allow direct microscopic determination of the inter-layer spacing or the dielectric constant in the inter-layer region. While discrimination between inner-sphere and outer-sphere sorption complexes may be presumed from macroscopic experiments [122,123], direct determination of the structure and nature of surface complexes and the structure of the diffuse layer is not possible by these methods alone [40,124]. Nor is it clear that ideas from the chemistry of isolated species in solution (e.g., outer-vs. inner-sphere complexes) are directly transferable to the surface layer or if additional short- to mid-range structural ordering is important. Instead, in situ (in the presence of bulk water) molecular-scale probes such as X-ray absorption fine structure spectroscopy (XAFS) and X-ray standing wave (XSW) methods are needed to provide this information (see Section 3.4). To date, however, there have been very few molecular-scale experimental studies of the EDL at the metal oxide-aqueous solution interface (see, e.g., [125,126]). [Pg.474]

Various chemical surface complexation models have been developed to describe potentiometric titration and metal adsorption data at the oxide—mineral solution interface. Surface complexation models provide molecular descriptions of metal adsorption using an equilibrium approach that defines surface species, chemical reactions, mass balances, and charge balances. Thermodynamic properties such as solid-phase activity coefficients and equilibrium constants are calculated mathematically. The major advancement of the chemical surface complexation models is consideration of charge on both the adsorbate metal ion and the adsorbent surface. In addition, these models can provide insight into the stoichiometry and reactivity of adsorbed species. Application of these models to reference oxide minerals has been extensive, but their use in describing ion adsorption by clay minerals, organic materials, and soils has been more limited. [Pg.220]

It is very attractive to couple the 3D-RISM method with the KS-DFT for the electronic structure to self-consistently obtain both classical and electronic properties of solutions and interfaces. The 3D-RISM approach using the 3D-FFT technique naturally combines with the KS-DFT in the planewave implementation. The planewave basis set is convenient for the simple representation of the kinetic and potential energy operators, and is frequently employed for large systems. The hybrid KS-DFT/3D-RISM method is illustrated below by the example of a metal slab immersed in aqueous solvent [28]. In a self-consistent field (SCF) loop the electronic structure of the metal solute in contact with molecular solvent is obtained from the KS-DFT equations modified for the presence of the solvent. The electron subsystem of the interface is assumed to be at the zeroth temperature, whereas its classical counterpart to have temperature T. The energy parameter of the KS-DFT is replaced by the Helmholtz free energy defined as... [Pg.240]

Halley and Mazzolo l develop>ed a flrst-principles-based direct dynamics method to examine the water/copper metal interface. Previous models on the electrochemical metal/ water interface published in the literature could not straightforwardly describe the asymmetry of the capacitance measured experimentally in the double layer. In approach taken by Halley and MazoUo, the electrons in the metal are modeled quantum mechanically using a jellium-type free electron model where only the s-electrons in copper are treated. Pseudopotentials are used to describe the electron interactions with water. The water solution phase is decoupled from the electronic structure and treated by molecular dynamics simulations with explicit water molecules using classical force fields. Gouy-Chapman theory is used to treat ionic screening. The electronic structure at the interface between the metal and the water is carefully matched by p>erforming electronic structure calculations on the metal substrate after each time step in the water MD simulation. The approach was used to examine the influence of applied potential on the structm-e of the metal-water... [Pg.278]

The idea is that X must govern in some way all properties of the interface, including the permittivity. The latter includes an electronic and a molecular term, which have been tentatively separated7 on the basis of model approaches. In this chapter, only the correlation of the capacitance with X is relevant. The correlation between 11C and tX has been demonstrated for eight metals in aqueous solution. It has been shown26,34 that the correlation derived from sp-metals is fit also by single-crystal faces of sd-metals. In particular, the capacitance of Ag increases in the sequence... [Pg.180]

The main shortcoming of the molecular dynamics approach discussed in the previous section is that it ignores the fact that an electron transfer at the solution/metal interface occurs between an ion in a well-defined electronic state and a continuum of electronic states in the metal. For example, depending on the ion s orbital energy, the reorganization free energy and the overpotential, the electron could be transferred from, or to, any level around the Fermi level of the metal. Therefore, a sum over all these possibilities must be performed. Analytical theories of electron transfer at the solution/metal interface recognized this issue very early on, and the reader is referred to many excellent expositions on this sub-... [Pg.168]

The key effect of oxide supports on the catalytic activities of metal particles is exerted through the interface between oxides and metal particles. The key objective of this study is to develop synthesis methodologies for tailoring this interface. Here, an SSG approach was introduced to modify the surface of mesoporous silica materials with ultrathin films of titanium oxide so that the uniform deposition of gold precursors on ordered mesoporous silica materials by DP could be achieved without the constraint of the low lEP of silica. The surface sol-gel process was originally developed by Kunitake and coworkers.This novel technology enables molecular-scale control of film thickness over a large 2-D substrate area and can be viewed as a solution-based... [Pg.62]

Similar to the molecular photosensitizers described above, solid semiconductor materials can absorb photons and convert light into electrical energy capable of reducing C02. In solution, a semiconductor will absorb light, and the electric field created at the solid-liquid interface effects the separation of photo-excited electron-hole pairs. The electrons can then carry out an interfacial reduction reaction at one site, while the holes can perform an interfacial oxidation at a separate site. In the following sections, details will be provided of the reduction of C02 at both bulk semiconductor electrodes that resemble their metal electrode counterparts, and semiconductor powders and colloids that approach the molecular length scale. Further information on semiconductor systems for C02 reduction is available in several excellent reviews [8, 44, 104, 105],... [Pg.305]

Several techniques have been reported and, at the present time, the vapor phase deposition processes operating at temperatures around 300 °C are the most used. Thus II-VI compounds films like CdS, CdSe, CdTe, ZnS, ZnSe, and ZnTe have been grown epitaxially on Si, InP, GaAs, GaP, by molecular beam epitaxy (MBE) [204-207], by metal organic chemical vapor deposition (MOCVD) [208-210], or by pulsed laser deposition [211, 212]. Epitaxial deposition from aqueous solutions at low temperatures (< 100 °C) represents another approach. Specific beneficial effects may be also expected due to the simplicity of the process involving low cost investments. On the other hand the low temperature has for consequence the absence of interdiffusion processes around interfaces and the interfacial properties of the solids in contacts with solutions implicate excellent coverage properties at low thicknesses. Different... [Pg.212]

An alternative description of a molecular solvent in contact with a solute of arbitrary shape is provided by the 3D generalization of the RfSM theory (3D-RISM) which yields the 3D correlation functions of interaction sites of solvent molecules near the solute. It was first proposed in a general form by Chandler, McCoy, and Singer [22] and recently developed by several authors for various systems by Cortis, Rossky, and Friesner [23] for a one-component dipolar molecular liquid, by Beglov and Roux [24, 25] for water and a number of organic molecules in water, and by Hirata and co-workers for water [26, 27], metal-water [26, 28] and metal oxide-water [31] interfaces, orientationally dependent potentials of mean force between molecular ions in a polar molecular solvent [29], ion pairs in aqueous electrolyte [30], and hydration of hydrophobic and hydrophilic solutes alkanes [32], polar molecule of carbon monoxide [33], simple ions [34], protein [35], amino acids and polypeptides [36, 37]. It should be noted that accurate calculation of the solvation thermodynamics for ionic and polar solutes in a polar molecular liquid requires special corrections to the 3D-RISM equations to eliminate the electrostatic artifacts of the supercell treatment employed in the 3D-RISM approach [30, 34]. [Pg.171]


See other pages where Metal-solution interface molecular approach is mentioned: [Pg.1948]    [Pg.1948]    [Pg.312]    [Pg.193]    [Pg.7]    [Pg.259]    [Pg.434]    [Pg.174]    [Pg.738]    [Pg.24]    [Pg.422]    [Pg.9]    [Pg.354]    [Pg.141]    [Pg.303]    [Pg.2]    [Pg.148]    [Pg.284]    [Pg.220]    [Pg.628]    [Pg.480]    [Pg.30]    [Pg.194]    [Pg.402]    [Pg.116]    [Pg.628]    [Pg.11]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Interface solution

Metal solutions

Metal/solution interface

Metallic molecular

Molecular approach

Molecular metal

Molecular solution

Solution approaches

Solutions metallic

© 2024 chempedia.info