Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial reduction

Similar to the molecular photosensitizers described above, solid semiconductor materials can absorb photons and convert light into electrical energy capable of reducing C02. In solution, a semiconductor will absorb light, and the electric field created at the solid-liquid interface effects the separation of photo-excited electron-hole pairs. The electrons can then carry out an interfacial reduction reaction at one site, while the holes can perform an interfacial oxidation at a separate site. In the following sections, details will be provided of the reduction of C02 at both bulk semiconductor electrodes that resemble their metal electrode counterparts, and semiconductor powders and colloids that approach the molecular length scale. Further information on semiconductor systems for C02 reduction is available in several excellent reviews [8, 44, 104, 105],... [Pg.305]

Typical Applications EPR spectra were obtained for both the interfacial reduction of 7,7,8,8,-tetracyanoquinodi-methane (TCNQ) and oxidation of tetrathi-afulvalene (TTF), when dissolved in DCE by the aqueous phase ferri/ferrocyanide redox couple, following the application of a potential difference directly to the liquid I liquid interface. Previous work [111, 112] suggested that a charge-transfer process occurs at the liquid liquid interface, due to the heterogeneous reduction of TCNQ by the aqueous couple,... [Pg.744]

It is quite clear, first of all, that since emulsions present a large interfacial area, any reduction in interfacial tension must reduce the driving force toward coalescence and should promote stability. We have here, then, a simple thermodynamic basis for the role of emulsifying agents. Harkins [17] mentions, as an example, the case of the system paraffin oil-water. With pure liquids, the inter-facial tension was 41 dyn/cm, and this was reduced to 31 dyn/cm on making the aqueous phase 0.00 IM in oleic acid, under which conditions a reasonably stable emulsion could be formed. On neutralization by 0.001 M sodium hydroxide, the interfacial tension fell to 7.2 dyn/cm, and if also made O.OOIM in sodium chloride, it became less than 0.01 dyn/cm. With olive oil in place of the paraffin oil, the final interfacial tension was 0.002 dyn/cm. These last systems emulsified spontaneously—that is, on combining the oil and water phases, no agitation was needed for emulsification to occur. [Pg.504]

Supersaturation has been observed to affect contact nucleation, but the mechanism by which this occurs is not clear. There are data (19) that infer a direct relationship between contact nucleation and crystal growth. This relationship has been explained by showing that the effect of supersaturation on contact nucleation must consider the reduction in interfacial supersaturation due to the resistance to diffusion or convective mass transfer (20). [Pg.343]

Finally, some general rules for the amount of surfactant appear to be vaHd (13). For anionic surfactants the average size of droplets is reduced for an increase of surfactant concentration up to the critical micellization concentration, whereas for nonionic surfactants a reduction occurs also for concentrations in excess of this value. The latter case may reflect the solubiHty of the nonionic surfactant in both phases, causing a reduction of interfacial tension at higher concentrations, or may reflect the stabilizing action of the micelles per se. [Pg.197]

A reduction of the o/w interfacial tension has a disadvantage because it makes the contact angle 9 more sensitive to small differences between and y. After a certain concentration of surfactant in the oil phase has brought the contact angle to 90°, the process is repeated but with the surfactant added to the oil before the phases are brought into contact. If the water droplet does not spread and its contact angle is in excess of 90°, the surfactant is added to the aqueous phase. [Pg.205]

An impeller with a high fluid head is one with high peripheral velocity and discharge velocity. Such impellers are useful for (I) rapid reduction of concentration differences in the impeller discharge stream (rapid mixing), (2) production of large interfacial area and small droplets in gas-hquid and immiscible-liquid systems, (3) sohds deagglomeration, and (4) promotion of mass transfer between phases. [Pg.1629]

Bonded-bolted joints generally have better performance than either bonded or bolted joints. The bonding results in reduction of the usual tendency of a bolted joint to shear out. The bolting decreases the likelihood of a bonded joint debonding in an interfacial shear mode. The usual mode of failure for a bonded-bolted joint is either a tension failure through a section including a fastener or an interlaminar shear failure in the composite material or a combination of both. [Pg.421]

Lattice models for bulk mixtures have mostly been designed to describe features which are characteristic of systems with low amphiphile content. In particular, models for ternary oil/water/amphiphile systems are challenged to reproduce the reduction of the interfacial tension between water and oil in the presence of amphiphiles, and the existence of a structured disordered phase (a microemulsion) which coexists with an oil-rich and a water-rich phase. We recall that a structured phase is one in which correlation functions show oscillating behavior. Ordered lamellar phases have also been studied, but they are much more influenced by lattice artefacts here than in the case of the chain models. [Pg.656]

Even though the basic idea of the Widom model is certainly very appealing, the fact that it ignores the possibihty that oil/water interfaces are not saturated with amphiphiles is a disadvantage in some respect. The influence of the amphiphiles on interfacial properties cannot be studied in principle in particular, the reduction of the interfacial tension cannot be calculated. In a sense, the Widom model is not only the first microscopic lattice model, but also the first random interface model configurations are described entirely by the conformations of their amphiphilic sheets. [Pg.657]

The theory of Leibler holds for mainly compatible systems. Leibler developed a mean field formalism to study the interfacial properties of two polymers, A and B with an A-B copolymer. An expression for interfacial tension reduction was developed by Noolandi and Hong [ 18] based on thermodynamics to explain the emulsifying effect of the A-b-B in immiscible A-B blends (A-A-b-B-B). [18,19]. The expression for interfacial tension reduction Ar) in a binary lend upon the addition of divalent copolymer is given by ... [Pg.637]

According to this theory, the interfacial tension reduction should decrease linearly with copolymer content at low concentrations followed by a leveling off at higher concentrations. The theory of Noolandi and Hong [18]... [Pg.637]

This block copolymer acts as an emulsifying agent in the blends leading to a reduction in interfacial tension and improved adhesion. At concentrations higher than the critical value, the copolymer forms micelles in the continuous phase and thereby increases the domain size of the dispersed phase. [Pg.679]

ATBN - amine terminated nitrile rubber X - Flory Huggins interaction parameter CPE - carboxylated polyethylene d - width at half height of the copolymer profile given by Kuhn statistical segment length DMAE - dimethyl amino ethanol r - interfacial tension reduction d - particle size reduction DSC - differential scanning calorimetry EMA - ethylene methyl acrylate copolymer ENR - epoxidized natural rubber EOR - ethylene olefin rubber EPDM - ethylene propylene diene monomer EPM - ethylene propylene monomer rubber EPR - ethylene propylene rubber EPR-g-SA - succinic anhydride grafted ethylene propylene rubber... [Pg.682]

Here we present only one effect in detail which also is expected to occur in metallic alloys the enrichment of vacancies in the interfacial region (Fig. 4). For the chosen parameters, the density reduction 5p in the center of the interface even is a few percent in the fully segregated limit. However, 5p 0 as T Tc. [Pg.205]

The log of the reciprocal of the bulk concentration of surfactant (C in mol/ L) necessary to produce a surface or interfacial pressure of 20 raN/m, log( 1 / On= 20 i e > a 20 mN/m reduction in the surface or interfacial tension, is considered a measure of the efficiency of a surfactant. The effectiveness of surface tension reduction is the maximum effect the surfactant can produce irrespective of concentration, (rccmc = [y]0 - y), where [y]0 is the surface tension of the pure solvent and y is the surface tension of the surfactant solution at its cmc. [Pg.255]

TABLE 19 Efficiencies and Effectiveness of Water-Air Interfacial Tension Reduction of Alcohol and Alcohol Ether Sulfates... [Pg.259]


See other pages where Interfacial reduction is mentioned: [Pg.200]    [Pg.493]    [Pg.313]    [Pg.189]    [Pg.200]    [Pg.493]    [Pg.313]    [Pg.189]    [Pg.281]    [Pg.427]    [Pg.427]    [Pg.280]    [Pg.517]    [Pg.242]    [Pg.306]    [Pg.197]    [Pg.119]    [Pg.549]    [Pg.208]    [Pg.591]    [Pg.599]    [Pg.668]    [Pg.679]    [Pg.680]    [Pg.680]    [Pg.690]    [Pg.702]    [Pg.715]    [Pg.449]    [Pg.520]    [Pg.44]    [Pg.81]    [Pg.82]    [Pg.1005]    [Pg.277]    [Pg.54]   
See also in sourсe #XX -- [ Pg.313 ]




SEARCH



Alkaline interfacial tension reduction

Interfacial tension Reduction

Reduction of Surface and Interfacial Tension by Surfactants

Reduction, interfacial effects

Surface and interfacial tension reduction

© 2024 chempedia.info