Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface metal oxide species, determination

Two important parameters describing the EDL of a mineral are the point of zero charge (PZC) and the isoelectric point (IP). Healy et al.18) define the PZC as the concentration of PDI with the surface charge of a mineral metal oxides, PZC is determined by the concentration of PDI H+ or OH", in sparingly soluble salts by the concentration of PDI of the lattice. When both mechanisms of surface charge formation operate simultaneously, both ion species and their reaction products determine the PZC16,31). The IP is defined18) as the concentration of PDI at which the electrokinetic potential = 0. [Pg.97]

Recent studies of supported vanadium oxide catalysts have revealed that the vanadium oxide component is present as a two-dimensional metal oxide overlayer on oxide supports (1). These surface vanadium oxide species are more selective than bulk, crystalline V2O5 for the partial oxidation of hydrocarbons (2). The molecular structures of the surface vanadium oxide species, however, have not been resolved (1,3,4). A characterization technique that has provided important information and insight into the molecular structures of surface metal oxide species is Raman spectroscopy (2,5). The molecular structures of metal oxides can be determined from Raman spectroscopy through the use of group theory, polarization data, and comparison of the... [Pg.317]

In order to predict rates and mechanisms of reactions at hydrous metal oxide surfaces, adsorption phenomena must be understood in greater detail. Although forces contributing to the adsorption of organic compounds have been identified, their relative importance and interdependence have not been determined on a quantitative level. In addition, more must be learned about the nature of chemical transformations at interfaces. Changes in medium composition and the close vicinity of other adsorbed species are potentially of great importance in determining rates of interfacial reactions. [Pg.251]

The dehydrated surface metal oxide species are not coordinated to water and, therefore, their molecular structures are not related to those present in aqueous solutions. Consequently, the pH at PZC model cannot be employed to predict the dehydrated surface metal oxide structures. The molecular structures of the dehydrated surface metal oxide species, however, possess similarity to the structural inorganic chemistry of bulk metal oxides because of the absence of water ligands in both systems [60-62]. Instead of being solvated by coordinated water in the aqueous solution complexes, the bulk metal oxide structures are coordinated to various cations (e.g., K, Na, Ca, Mg, Fe, Al, Ce, Zr, H, etc.). Prior to discussing the current understanding of the molecular structures of the dehydrated surface metal oxide species, a brief review of the structural inorganic chemistry of bulk metal oxides and their determination methods are presented to highlight the molecular structural similarities, as well as differences, between these two- and three-dimensional metal oxide systems. [Pg.7]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

At least for ethylene hydrogenation, catalysis appears to be simpler over oxides than over metals. Even if we were to assume that Eqs. (1) and (2) told the whole story, this would be true. In these terms over oxides the hydrocarbon surface species in the addition of deuterium to ethylene would be limited to C2H4 and C2H4D, whereas over metals a multiplicity of species of the form CzH D and CsHs-jD, would be expected. Adsorption (18) and IR studies (19) reveal that even with ethylene alone, metals are complex. When a metal surface is exposed to ethylene, selfhydrogenation and dimerization occur. These are surface reactions, not catalysis in other words, the extent of these reactions is determined by the amount of surface available as a reactant. The over-all result is that a metal surface exposed to an olefin forms a variety of carbonaceous species of variable stoichiometry. The presence of this variety of relatively inert species confounds attempts to use physical techniques such as IR to char-... [Pg.3]

Such pentacarbonyl species can be further decarbonylated when the sample is heated to 373 K under an inert gas stream and under reduced pressure. This slow decarbonylation process provides the surface Mo(CO)3 species depicted in Figure 9.4, which is stable up to 473 K [14]. In contrast with the relevant chemical behavior in solution (9.1 and 9.2), in the solid state, where the species are somewhat diluted and present low mobility, no dimeric species have been identified as resulting from penta- or tricarbonyl species. Heating to 673 K gives rise to the evolution of H2, CO, CO2 and CH4, due to redox reactions between the metal center and the OH surface groups. The resulting oxidation states, as determined by XPS measurements, are mainly II and IV, besides some Mo(0) species ]20]. It is worth underHn-... [Pg.355]

A key aspect of metal oxides is that they possess multiple functional properties acid-base, electron transfer and transport, chemisorption by a and 7i-bonding of hydrocarbons, O-insertion and H-abstraction, etc. This multi-functionality allows them to catalyze complex selective multistep transformations of hydrocarbons, as well as other catalytic reactions (NO,c conversion, for example). The control of the catalyst multi-functionality requires the ability to control not only the nanostructure, e.g. the nano-scale environment around the active site, " but also the nano-architecture, e.g. the 3D spatial organization of nano-entities. The active site is not the only relevant aspect for catalysis. The local area around the active site orients or assists the coordination of the reactants, and may induce sterical constrains on the transition state, and influences short-range transport (nano-scale level). Therefore, it plays a critical role in determining the reactivity and selectivity in multiple pathways of transformation. In addition, there are indications pointing out that the dynamics of adsorbed species, e.g. their mobility during the catalytic processes which is also an important factor determining the catalytic performances in complex surface reaction, " is influenced by the nanoarchitecture. [Pg.81]

Adsorption to mineral surfaces such as Fe and Al (hydr)oxides has long been known to be an important process that limits the mobility of heavy metals and metalloid species in aqueous systems (e.g., Stumm 1992). The sorption of ionic species in MSWI bottom ash has been recently studied in detail by Meima Comans (1998, 1999). These authors used a sequence of selective chemical extractions to determine sorbent concentration, namely Fe and Al (hydr)oxides. Their model calculations suggested that Zn(II) and M0O4 sorbed to Fe (hydr)oxides, while Pb(II) and Cu(II) appeared to have a greater affinity for Fe (hydr)oxides. The sorption of Cd(Il) was found to be very weak. The interpretation of... [Pg.615]

Macroscopic experiments allow determination of the capacitances, potentials, and binding constants by fitting titration data to a particular model of the surface complexation reaction [105,106,110-121] however, this approach does not allow direct microscopic determination of the inter-layer spacing or the dielectric constant in the inter-layer region. While discrimination between inner-sphere and outer-sphere sorption complexes may be presumed from macroscopic experiments [122,123], direct determination of the structure and nature of surface complexes and the structure of the diffuse layer is not possible by these methods alone [40,124]. Nor is it clear that ideas from the chemistry of isolated species in solution (e.g., outer-vs. inner-sphere complexes) are directly transferable to the surface layer or if additional short- to mid-range structural ordering is important. Instead, in situ (in the presence of bulk water) molecular-scale probes such as X-ray absorption fine structure spectroscopy (XAFS) and X-ray standing wave (XSW) methods are needed to provide this information (see Section 3.4). To date, however, there have been very few molecular-scale experimental studies of the EDL at the metal oxide-aqueous solution interface (see, e.g., [125,126]). [Pg.474]


See other pages where Surface metal oxide species, determination is mentioned: [Pg.256]    [Pg.472]    [Pg.845]    [Pg.138]    [Pg.177]    [Pg.244]    [Pg.50]    [Pg.555]    [Pg.283]    [Pg.109]    [Pg.76]    [Pg.287]    [Pg.366]    [Pg.15]    [Pg.366]    [Pg.368]    [Pg.311]    [Pg.111]    [Pg.565]    [Pg.392]    [Pg.190]    [Pg.32]    [Pg.394]    [Pg.400]    [Pg.467]    [Pg.72]    [Pg.167]    [Pg.196]    [Pg.177]    [Pg.28]    [Pg.295]    [Pg.336]    [Pg.59]    [Pg.137]    [Pg.228]    [Pg.559]    [Pg.331]    [Pg.123]    [Pg.55]   


SEARCH



Metal determination

Metal oxide surfaces

Metal oxide surfaces, oxidation

Metal species

Metallated species

Oxidation determination

Oxidation species

Species determination

Surface determination

Surface metal oxide species

Surface metallic oxide

© 2024 chempedia.info