Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydroxide flame retardants

Complex organo-silane products are now emerging which seem able give significant improvements in the impact strength of highly filled polyolefins, especially when used in conjunction with metal hydroxide flame retardants [62]. This may significantly increase their use. [Pg.83]

Metallic interlayer (MIL) influences the chemical processes of FR. The role of metal ions in the degradation process has been summarized by Lewin and Endo [30], The advantageous effect of a MIL around metal hydroxide flame retardants was utilized at first by Hornsby et al. [31]. They proposed a zinc-hydroxy-stannate (ZnHSt) layer, the detailed chemical-physical structure and 4.7 nm thickness... [Pg.336]

The additives business has been at the centre of environmental controversies for many years, and has made strenuous efforts to improve its products. Flame retardants for cable and wire insulation are increasingly made of nonhalogen, low-smoke materials, and there has been increased usage of phosphorus and metal hydroxide flame retardants in recent years. Major changes have also taken place in the heat stabiliser business, with lead compounds being voluntarily phased out over several years. [Pg.6]

In Chapter 7 the combination of nanocomposites with metal hydroxide flame retardants has generally been discussed. Since the use of metal hydroxide usually requires very high concentrations within the polymer matrix (often higher than 50% w/w), to achieve desired levels of flame retardancy as noted above regarding the work of Beyer, - the influence on rheology and hence processability can be significant. Hornsby and Roflion have discussed this issue and they report that compounded polymer melt viscosities and shear sensitivities, for example. [Pg.333]

Among the metallic hydroxide flame retardants, aluminium trihydrate, A1(0H)3 or magnesium hydroxide Mg(OH)2 are popular flame retardants and smoke suppressants (8). [Pg.74]

The other well known metallic polymer flame retardants are magnesium hydroxide and alumina trihydrate. [Pg.89]

In order for a soHd to bum it must be volatilized, because combustion is almost exclusively a gas-phase phenomenon. In the case of a polymer, this means that decomposition must occur. The decomposition begins in the soHd phase and may continue in the Hquid (melt) and gas phases. Decomposition produces low molecular weight chemical compounds that eventually enter the gas phase. Heat from combustion causes further decomposition and volatilization and, therefore, further combustion. Thus the burning of a soHd is like a chain reaction. For a compound to function as a flame retardant it must intermpt this cycle in some way. There are several mechanistic descriptions by which flame retardants modify flammabiUty. Each flame retardant actually functions by a combination of mechanisms. For example, metal hydroxides such as Al(OH)2 decompose endothermically (thermal quenching) to give water (inert gas dilution). In addition, in cases where up to 60 wt % of Al(OH)2 may be used, such as in polyolefins, the physical dilution effect cannot be ignored. [Pg.465]

Inert Gas Dilution. Inert gas dilution involves the use of additives that produce large volumes of noncombustible gases when the polymer is decomposed. These gases dilute the oxygen supply to the flame or dilute the fuel concentration below the flammability limit. Metal hydroxides, metal carbonates, and some nitrogen-producing compounds function in this way as flame retardants (see Flame retardants, antimony and other inorganic compounds). [Pg.465]

Thermal Quenching. Endothermic degradation of the flame retardant results in thermal quenching. The polymer surface temperature is lowered and the rate of pyrolysis is decreased. Metal hydroxides and carbonates act in this way. [Pg.465]

The aluminum containing compound having the largest worldwide market, estimated to be over 30 x 10 t in 1990, is metal grade alumina. Second, is aluminum hydroxide. In 1990 the market for Al(OH)2 should approach or exceed 3.5 million metric tons which is equivalent to 2.3 million tons on an alumina basis. The spHt between additive and feedstock appHcations for Al(OH)2 (16) is roughly 50 50. Additive appHcations include those as flame retardants (qv) in products such as carpets, and to enhance the properties of paper (qv), plastic, polymer, and mbber products. Significant quantities are also used in pharmaceuticals (qv), cosmetics (qv), adhesives (qv), poHshes (qv), dentifrices (qv), and glass (qv). [Pg.136]

Hitachi Cable Ltd. (35) has claimed that dehydrogenation catalysts, exemplified by chromium oxide—zinc oxide, iron oxide, zinc oxide, and aluminum oxide—manganese oxide inhibit drip and reduce flammability of a polyolefin mainly flame retarded with ATH or magnesium hydroxide. Proprietary grades of ATH and Mg(OH)2 are on the market which contain small amounts of other metal oxides to increase char, possibly by this mechanism. [Pg.104]

In 2000, NEC developed an epoxy resin with what it describes as a fire-retardant structure that avoids the need for either TBBA or phosphorus-based flame retardants in circuit boards. The new resin contains a metal hydroxide retardant. The company claims the new board is almost totally free of pollutants, and is easy to process and thermally recycle. By also integrating flame retardant properties within the board, use of the metal hydroxide is minimised, while offering good electrical properties, higher heat resistance and improved processing characteristics. ... [Pg.20]

Metal hydroxides in combination with various silicon-containing compounds have been used to reduce the amount of additive required to achieve a required level of flame retardancy in a variety of polymeric materials, including polyolefins.62-63 Systems that have been used contain a combination of reactive silicone polymers, a linear silicone fluid or gum, and a silicone resin, which is soluble in the fluid, in addition to a metal soap, in particular magnesium stearate. However, there is little insight given into how these formulations work. [Pg.176]

It has been shown that the required loading levels of metal hydroxides to flame retard polyolefins can be reduced by the addition of transition metal oxides as synergistic agents. For example, a combination of 47.6% MH modified with nickel oxide in PP gave a UL94 V-0 flammability rating, which would require -55% of unmodified MH.4 These systems, however, can only be used where the color of the product is not important. [Pg.176]

The addition of metal nitrates to improve the flame retardancy of metal hydroxides and EVA has been reported.64 Synergistic behavior was observed by an addition of 2% of copper nitrate to EVA containing only 33% ATH, in which the oxygen index was raised from 19.9% to 30.0%. [Pg.176]

The addition of silane cross-linkable PE copolymer to PE/metallic hydroxide systems can significantly improve the flame-retardant properties of these materials allowing lower filler levels to be used.69... [Pg.177]

The combination of melamine with hydrated mineral fillers can improve the fire retardancy behavior of PP, eliminating at the same time the afterglow phenomenon associated with these fillers used in isolation.70 Similarly in EVA copolymer, antimony trioxide used in combination with metal hydroxides has been reported to reduce incandescence.56 Chlorinated and brominated flame retardants are sometimes used in combination with metal hydroxides to provide a balance of enhanced fire-retardant efficiency, lower smoke evolution, and lower overall filler levels. For example, in polyolefin wire and cable formulations, magnesium hydroxide in combination with chlorinated additives was reported to show synergism and reduced smoke emission.71... [Pg.177]

Shen, K.K, Olson, E., Amigouet, P., and Tong, C. 2006. Recent advances on the use of metal hydroxides and borates as fire retardants in halogen-free polyolefins. The 17th Annual BCC Conference on Flame Retardancy, Stamford, CT, May. [Pg.235]

New developments in the use of silicates to improve flame retardancy have arisen from the use of synthetic anionic clays that correspond to the family of lamellar mixed metal hydroxides, commonly named layered double hydroxides (LDH) or hydrotalcite-like compounds.17... [Pg.303]

Marosi, G., Keszei, S., Matko, S., and Bertalan, G. 2006. Effect of interfaces in metal hydroxide-type and intumescent flame retarded nanocomposites. In Fire and Polymers TV Materials and Concepts for Hazard Prevention, Vol. 922, eds. Wilkie, C. and Nelson, G. Washington, DC ACS, pp. 117-30. [Pg.346]

Halogenated compounds such as bis(alkyl ether)tetrabromobisphenol A or decabromodiphenyl oxide (DECA) may be used as flame-retardants for polyolefin foams, eventually using antimony oxide, metal oxides, boric acid salts, and metal hydroxides as synergist.92 For example Weil and Levchik93 reported that using suitable amounts of DECA and Sb203, polyethylene foams rated UL94 HF-1 are obtained. [Pg.775]

There are a number of flame-retarding mechanisms that operate in the solid phase of polymers. One is to use additives that absorb some of the heat of combustion by endothermic reactions this was mentioned in the previous section in connection with metal hydroxides. [Pg.692]

Western-world bauxite production in 1988 totaled about 90 x 10 t, approximately 90% of which was refined to aluminum hydroxide by the Bayer process. Most of the hydroxide was then calcined to alumina and consumed in making aluminum metal. The balance, which constituted about 2.3 x 10 t in 1988 (Table 2), was consumed in production of abrasives (qv) adhesives (qv) calcium aluminate cement used in binding ceramics (qv) and refractories (qv) catalysts used in petrochemical processes and automobile catalytic converter systems (see Petroleum Exhaust control, automotive) ceramics that insulate electronic components such as semiconductors and spark plugs chemicals such as alum, aluminum halides, and zeoHte countertop materials for kitchens and baths cultured marble fire-retardant filler for acryhc and plastic materials used in automobile seats, carpet backing, and insulation wrap for wire and cable (see Flame retardants) paper (qv) cosmetics (qv) toothpaste manufacture refractory linings for furnaces and kilns and separation systems that remove impurities from Hquids and gases. [Pg.131]

Metal hydrates such as aluminium trihydrate or magnesium hydroxide remove heat by using it to evaporate water in their structures, thus protecting polymers. Bromine or chlorine-containing fire retardants interfere with the reactions in flames and quench them. Mixtures of flame retardants antimony trioxide and organic bromine compounds are more effective at slowing the rate of burning than the individual flame retardants alone. [Pg.75]


See other pages where Metal hydroxide flame retardants is mentioned: [Pg.114]    [Pg.114]    [Pg.720]    [Pg.67]    [Pg.133]    [Pg.164]    [Pg.313]    [Pg.331]    [Pg.331]    [Pg.337]    [Pg.772]    [Pg.789]    [Pg.791]    [Pg.194]    [Pg.664]    [Pg.220]    [Pg.220]    [Pg.742]    [Pg.691]    [Pg.1881]    [Pg.220]    [Pg.80]    [Pg.260]    [Pg.115]   
See also in sourсe #XX -- [ Pg.119 , Pg.132 ]




SEARCH



Flame metals

Flame retardants hydroxide)

Metal hydroxides

Metallic hydroxide

© 2024 chempedia.info