Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydride amines

A number of less hindered monoalkylboranes is available by indirect methods, eg, by treatment of a thexylborane—amine complex with an olefin (69), the reduction of monohalogenoboranes or esters of boronic acids with metal hydrides (70—72), the redistribution of dialkylboranes with borane (64) or the displacement of an alkene from a dialkylborane by the addition of a tertiary amine (73). To avoid redistribution, monoalkylboranes are best used /V situ or freshly prepared. However, they can be stored as monoalkylborohydrides or complexes with tertiary amines. The free monoalkylboranes can be hberated from these derivatives when required (69,74—76). Methylborane, a remarkably unhindered monoalkylborane, exhibits extraordinary hydroboration characteristics. It hydroborates hindered and even unhindered olefins to give sequentially alkylmethyl- and dialkylmethylboranes (77—80). [Pg.310]

Primary dialkylboranes react readily with most alkenes at ambient temperatures and dihydroborate terminal acetylenes. However, these unhindered dialkylboranes exist in equiUbtium with mono- and ttialkylboranes and cannot be prepared in a state of high purity by the reaction of two equivalents of an alkene with borane (35—38). Nevertheless, such mixtures can be used for hydroboration if the products are acceptable for further transformations or can be separated (90). When pure primary dialkylboranes are required they are best prepared by the reduction of dialkylhalogenoboranes with metal hydrides (91—93). To avoid redistribution they must be used immediately or be stabilized as amine complexes or converted into dialkylborohydtides. [Pg.310]

Hydrolysis of primary amides cataly2ed by acids or bases is very slow. Even more difficult is the hydrolysis of substituted amides. The dehydration of amides which produces nitriles is of great commercial value (8). Amides can also be reduced to primary and secondary amines using copper chromite catalyst (9) or metallic hydrides (10). The generally unreactive nature of amides makes them attractive for many appHcations where harsh conditions exist, such as high temperature, pressure, and physical shear. [Pg.183]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

Heterocyclic structures analogous to the intermediate complex result from azinium derivatives and amines, hydroxide or alkoxides, or Grignard reagents from quinazoline and orgahometallics, cyanide, bisulfite, etc. from various heterocycles with amide ion, metal hydrides,or lithium alkyls from A-acylazinium compounds and cyanide ion (Reissert compounds) many other examples are known. Factors favorable to nucleophilic addition rather than substitution reactions have been discussed by Albert, who has studied examples of easy covalent hydration of heterocycles. [Pg.171]

Although catalytic hydrogenation is the method most often used, double bonds can be reduced by other reagents, as well. Among these are sodium in ethanol, sodium and rerr-butyl alcohol in HMPA, lithium and aliphatic amines (see also 15-14), " zinc and acids, sodium hypophosphate and Pd-C, (EtO)3SiH—Pd(OAc)2, trifluoroacetic acid and triethylsilane (EtsSiH), and hydroxylamine and ethyl acetate.However, metallic hydrides, such as lithium aluminum hydride and sodium borohydride, do not in general reduce carbon-carbon double bonds, although this can be done in special cases where the double bond is polar, as in 1,1-diarylethenes and in enamines. " °... [Pg.1007]

See related metal halides, metal hydrides See other amination incidents... [Pg.1347]

Dialkylamino derivatives of elements located in the periodic table to the left or below those listed above cannot be prepared by the above method due to either the ionic character of some of the inorganic halides or the formation of stable metal halide-amine addition products. Therefore, other methods must be applied. Dialkylamino derivatives of tin7 and antimony8 are conveniently obtained by reaction of the corresponding halides with lithium dialkylamides. Others, such as the dialkylamino derivatives of aluminum,9 are made by the interaction of the hydride with dialkylamines. Dialkylamino derivatives of beryllium10 or lithium11 result from the reaction of the respective alkyl derivative with a dialkylamine. [Pg.132]

The use of amines allows much higher nucleophile concentrations than those achievable with Bronsted bases. We have used solutions as concentrated as 6 M Me N. This vast difference in available nucleophile concentration partially explains the huge increase in rate afforded by NMe3 over the rate with Bronsted bases. Very large concentrations of hydroxide may promote the base attack step but can decrease the rate of the WGSR due to inhibition of the protonation of the metal hydride species. [Pg.329]

Hydrogen will not reduce ketones or imines using CATHy or related catalysts. Inorganic hydrogen donors that have been used include dithionite and di-hydrogenphosphite salts, metal hydrides such as sodium borohydride, and sodium cyanoborohydride. Recently, amines have been shown to function as hydrogen donors with some catalysts. The enzymic cofactor NADH can be used stoichiometrically, and the potential exists to use this catalytically [56]. [Pg.1229]

The primary, secondary, and tertiary aliphatic amines do not form simple addition complex ions with bare transition metal ions. Only Ag+ reacts with MeNH2 to form a simple addition product [AgMeNH2]+ (107). The Pb+ ion also forms addition products, [PbMeNH2]+ and [Pb(MeNH2)2]+, with methylamine (143). Other bare transition metal ions (144) react with amines via removal of one hydrogen to form the metal hydride and the amine cation with one hydrogen removed [RR N]+. [Pg.372]

Metal-free initiators, 14 258-259 Metal fullerenes, 2 718-719 Metal-halogen exchange, in pyridine chemistry, 22 107-108 Metal hydrazides, 23 567 Metal hydrides, 23 611-613 amines by reduction, 2 493 hydrogen storage and, 23 851 nitriding, 27 206-207 storage of, 23 786... [Pg.566]

The nucleophilic attack by alkoxides, amines, and water is of great interest to homogeneous catalysis. A dominant reaction in syn-gas systems is the conversion of carbonyls with water to metal hydrides and carbon dioxide ("Shift Reaction"), see Figure 2.27. [Pg.46]

A combined reductive amination sequence has been developed as a useful way of synthesizing amines, with sodium cyanoborohydride as the reducing agent of choice. This complex metal hydride is a less reactive version of sodium... [Pg.246]

The combined reaction thus involves initial formation of the iminium ion from the carbonyl compound and amine at pH 6, and this intermediate is then reduced by the complex metal hydride to give the amine. This can also he a way of making methyl-suhstituted amines via intermediate imines with formaldehyde. [Pg.246]

We shall see later (see Section 15.6) that reductive amination of a keto acid is the way nature synthesizes amino acids, using the biological analogue of a complex metal hydride, namely NADPH (see Box 7.6). [Pg.246]

Amides seem to behave differently, with complex metal hydride reduction giving an amine, effectively converting the carbonyl group to a methylene (see Section 7.11). [Pg.271]

If one or more of the hydrogen atoms of a non-metal hydride are replaced formally with another group, R—e.g., alkyl residues—then derived compounds of the type R-XHn-i, R-XHn-2-R, etc., are obtained. In this way, alcohols (R-OH) and ethers (R-O-R) are derived from water (H2O) primary amines (R-NH2), secondary amines (R-NH-R) and tertiary amines (R-N-R R") amines are obtained from ammonia (NH3) and thiols (R-SH) and thioethers (R-S-R ) arise from hydrogen sulfide (H2S). Polar groups such as -OH and -NH2 are found as substituents in many organic compounds. As such groups are much more reactive than the hydrocarbon structures to which they are attached, they are referred to as functional groups. [Pg.10]

Many synthetic methods have been reported for the pyrrolidine alkaloids, including procedures based on the Hofmann-Loffler reaction 132,412), the metal hydride reduction of pyrrolines 413,414), the a-alkylation of N-nitro-sopyrrolidine 412,415), the catalytic hydrogenation of pyrroles 133), the reductive amination of 1,4-diketones 25,138), the direct alkylation of 1-methoxy-carbonyl-3-pyrroline 416), the versatile synthesis from the Lukes-Sorm dilac-... [Pg.251]

Reactions of propynyl alcohols and their derivatives with metal hydrides, such as lithium aluminum hydride, constitute an important regio- and stereoselective approach to chiral allenes of high enantiomeric purity63-69. Formally, a hydride is introduced by net 1,3-substitution, however, when leaving groups such as amines, sulfonates and tetrahydropyranyloxy are involved, it has been established that the reaction proceeds by successive trans-1,2-addition and preferred anti-1,2-elimination reactions. The conformational mobility of the intermediate results in both syn- and ami- 1,2-elimination, which leads to competition between overall syn- and anti-1,3-substitution and hence lower optical yields and/or a reversal of the stereochemistry. [Pg.546]

This process has not been studied in detail. It has been shown that diphenylnitren-ium ion reacts with various hydrocarbons and metal hydrides to give diphenyl amine. An analysis of the rate constants for these processes showed that the reaction was most likely a hydride transfer, rather than a hydrogen atom transfer (Fig. 13.56). Novak and Kazerani found a similar process in their study of the decay reaction of heteroarylnitrenium ions. [Pg.628]

Amides, azides and nitriles are reduced to amines by catalytic hydrogenation (H2/Pd—C or H2/Pt—C) as well as metal hydride reduction (LiAlH4). They are less reactive towards the metal hydride reduction, and cannot be reduced by NaBITj. Unlike the LiAlIU reduction of all other carboxylic acid derivatives, which affords 1° alcohols, the LiAlIU reduction of amides, azides and nitriles yields amines. Acid is not used in the work-up step, since amines are basic. Thus, hydrolytic work-up is employed to afford amines. When the nitrile group is reduced, an NH2 and an extra CH2 are introduced into the molecule. [Pg.277]

The simple, salt elimination reaction of Equation (8.1) has been employed for amides of all the group 13 metals. In addition, it is currently the only well-established route to M(I) metal amides where M = Ga or Tl. The alkane elimination route of eqn. (8.2) is generally employed only for M = Al or Ga. This synthetic approach is also used for the metal imides (RMNR )n where a primary amine H2NR is the reactant. The use of metal hydrides, of which Equation (8.3) is but one example, is limited mainly to aluminium and, to a lesser extent, gallium because of the decreased stability of the heavier metal hydrides. [Pg.220]


See other pages where Metal hydride amines is mentioned: [Pg.240]    [Pg.192]    [Pg.70]    [Pg.1553]    [Pg.1569]    [Pg.260]    [Pg.4]    [Pg.18]    [Pg.107]    [Pg.558]    [Pg.521]    [Pg.1223]    [Pg.199]    [Pg.190]    [Pg.46]    [Pg.89]    [Pg.59]    [Pg.573]    [Pg.1052]    [Pg.987]    [Pg.284]    [Pg.520]    [Pg.89]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.4 ]




SEARCH



Amines metallation

Metal-amine

Metalation amines

Transition-metal hydrides amines

© 2024 chempedia.info