Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal catalyst recovery

Additionally, from an economic point of view, since the precious metal catalyst load on the anode is high in direct fuel cells (typically > 1 mg cm ), catalyst recovery and recycling will be of utmost importance for the commercial viability of these power sources. In this context, research from Degussa AG has shown that the procedure of precious metal catalyst recovery is generally made easier by the use of carbon support, since it can be burnt off followed by efficient metal recovery from the ashes [252]. [Pg.237]

Catalyst recovery is a major operational problem because rhodium is a cosdy noble metal and every trace must be recovered for an economic process. Several methods have been patented (44—46). The catalyst is often reactivated by heating in the presence of an alcohol. In another technique, water is added to the homogeneous catalyst solution so that the rhodium compounds precipitate. Another way to separate rhodium involves a two-phase Hquid such as the immiscible mixture of octane or cyclohexane and aliphatic alcohols having 4—8 carbon atoms. In a typical instance, the carbonylation reactor is operated so the desired products and other low boiling materials are flash-distilled. The reacting mixture itself may be boiled, or a sidestream can be distilled, returning the heavy ends to the reactor. In either case, the heavier materials tend to accumulate. A part of these materials is separated, then concentrated to leave only the heaviest residues, and treated with the immiscible Hquid pair. The rhodium precipitates and is taken up in anhydride for recycling. [Pg.78]

The acetic anhydride process employs a homogeneous rhodium catalyst system for reaction of carbon monoxide with methyl acetate (36). The plant has capacity to coproduce approximately 545,000 t/yr of acetic anhydride, and 150,000 t/yr of acetic acid. One of the many challenges faced in operation of this plant is recovery of the expensive rhodium metal catalyst. Without a high recovery of the catalyst metal, the process would be uneconomical to operate. [Pg.167]

Heterogeneous hydrogenation catalysts can be used in either a supported or an unsupported form. The most common supports are based on alurnina, carbon, and siUca. Supports are usually used with the more expensive metals and serve several purposes. Most importandy, they increase the efficiency of the catalyst based on the weight of metal used and they aid in the recovery of the catalyst, both of which help to keep costs low. When supported catalysts are employed, they can be used as a fixed bed or as a slurry (Uquid phase) or a fluidized bed (vapor phase). In a fixed-bed process, the amine or amine solution flows over the immobile catalyst. This eliminates the need for an elaborate catalyst recovery system and minimizes catalyst loss. When a slurry or fluidized bed is used, the catalyst must be separated from the amine by gravity (settling), filtration, or other means. [Pg.259]

Dry reduced nickel catalyst protected by fat is the most common catalyst for the hydrogenation of fatty acids. The composition of this type of catalyst is about 25% nickel, 25% inert carrier, and 50% soHd fat. Manufacturers of this catalyst include Calsicat (Mallinckrodt), Harshaw (Engelhard), United Catalysts (Sud Chemie), and Unichema. Other catalysts that stiH have some place in fatty acid hydrogenation are so-called wet reduced nickel catalysts (formate catalysts), Raney nickel catalysts, and precious metal catalysts, primarily palladium on carbon. The spent nickel catalysts are usually sent to a broker who seUs them for recovery of nickel value. Spent palladium catalysts are usually returned to the catalyst suppHer for credit of palladium value. [Pg.91]

Reclamation, Disposal, and Toxicity. Removal of poisons and inorganic deposits from used catalysts is typically difficult and usually uneconomical. Thus some catalysts are used without regeneration, although they may be processed to reclaim expensive metal components. Used precious metal catalysts, including automobile exhaust conversion catalysts, are treated (often by the suppHers) to extract the metals, and recovery efficiencies are high. Some spent hydroprocessing catalysts may be used as sources of molybdenum and other valuable metals. [Pg.174]

Polymer-supported catalysts incorporating organometaUic complexes also behave in much the same way as their soluble analogues (28). Extensive research has been done in attempts to develop supported rhodium complex catalysts for olefin hydroformylation and methanol carbonylation, but the effort has not been commercially successful. The difficulty is that the polymer-supported catalysts are not sufftciendy stable the valuable metal is continuously leached into the product stream (28). Consequendy, the soHd catalysts fail to eliminate the problems of corrosion and catalyst recovery and recycle that are characteristic of solution catalysis. [Pg.175]

Ex situ or off-site, regeneration of base metal catalysts is a service offered by several vendors worldwide, including Catalyst Recovery, Inc., of Lafayette, Louisiana, and Medicine Hat, Alberta, Canada Catalyst Recovery, Europe of Rodange, Luxembourg Nippon CRI of Miyako, Japan Englehard (formerly Edtrol) of Salt Lake City, Utah Eurecat, U.S., of Pasadena, Texas and Eurecat, SA of La Voulte, Erance (22—28). [Pg.225]

Marston Sala high-gradient magnetic separator Electromagnet, SI 1 percondi icting 20,000 50,000 Steel wool, expanded metal, steel halls 25x Itf Strongly to very weakly 0.0001-2 Iron ores, industrial minerals, coal, liquefied coal, wastewaters, purifiers, catalyst recovery, chemical industry... [Pg.1800]

Eventually all catalysts become spent. At this stage they can be discarded, itself sometimes a problem, or returned to a refiner for recovery of metal values. In commercial use, noble-metal catalysts are always returned to a refiner. At the refinery, the catalyst is destroyed and the noble metals are recovered and converted to high-purity metal. In a loop system, the pure metal is converted to a suitable salt and again used for catalyst manufacture. In the entire loop, some metal will be lost and must be replaced with fresh metal. Refining is nowadays very efficient, and most metal loss will occur in the process itself, The total cost of a catalyst used in a loop is accordingly given by ... [Pg.24]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]

These advantages notwithstanding, the proportion of homogeneous catalyzed reactions in industrial chemistry is still quite low. The main reason for this is the difficulty in separating the homogeneously dissolved catalyst from the products and by-products after the reaction. Since the transition metal complexes used in homogeneous catalysis are usually quite expensive, complete catalyst recovery is crucial in a commercial situation. [Pg.218]

The methods reported in these and other patents are plagued by low yields furthermore they normally necessitate the use of high pressure technology. The expensive precious metal catalyst must be recovered and reused. In most cases, selectivity and reaction rates deteriorate when recycled catalyst is used. No reports of adequate recovery of catalyst activity have been found. [Pg.219]

The immobilization of metal catalysts onto sohd supports has become an important research area, as catalyst recovery, recycling as well as product separation is easier under heterogeneous conditions. In this respect, the iron complex of the Schiff base HPPn 15 (HPPn = iVA -bis(o-hydroxyacetophenone) propylene diamine) was supported onto cross-linked chloromethylated polystyrene beads. Interestingly, the supported catalyst showed higher catalytic activity than the free metal complex (Scheme 8) [50, 51]. In terms of chemical stability, particularly with... [Pg.89]

Precious metal catalysts on carbon are often used. The entire cycle of catalyst manufacture, use, removal, and metal refining (recovery) typically loses 20-25% of the metal when the process operates well. [Pg.320]

The reductive carbonylation has an advantage of low feedstock cost. A wide range of homogenous metal complexes have been tested for both reactions (1-16). The major drawback of the use of metal complex catalysts is the difficulty of catalyst recovery and purification of the reaction products (12). In addition, the gaseous reactants have to be dissolved in the alcohol/amine mixture in order to have an access to the catalyst. The reaction is limited by the solubility of the gaseous CO and 02 reactants in the liquid alcohol reactant (17). [Pg.472]

The development of highly efficient and easily recoverable catalyst systems. Today, the high cost of hydrogenated polymers is due mainly to the cost of the metal catalyst and its recovery operation. [Pg.579]

O2 adsorption, 28 38 surface modility, 28 34 surface structure, 28 30, 31 oxidation of CO on, 28 65 oxide-supported metal catalysts, 41 10, 11 -phosphine catalysts achiral, 25 83-85 recovery, 32 354-356, 367-369 selectivity, 30 348 platinum, 30 355 -silica catalysts... [Pg.190]

This section describes catalytic systems made by a heterogeneous catalyst (e.g., a supported metal, dispersed metals, immobilized organometaUic complexes, supported acid-base catalysts, modified zeolites) that is immobilized in a hydrophilic or ionic liquid catalyst-philic phase, and in the presence of a second liquid phase—immiscible in the first phase—made, for example, by an organic solvent. The rationale for this multiphasic system is usually ease in product separation, since it can be removed with the organic phase, and ease in catalyst recovery and reuse because the latter remains immobilized in the catalyst-philic phase, it can be filtered away, and it does not contaminate the product. These systems often show improved rates as well as selectivities, along with catalyst stabilization. [Pg.136]

One of the most important difficulties in the use of homogeneous catalysis for technical applications is the recovery and reuse of the expensive metal catalyst. Various concepts for catalyst recychng are apphed to overcome this problem in current technical applications. A simple method is to perform the catalytic reaction in a single phase and to separate the product and the catalyst afterwards by distillation of the product, as reahzed, for... [Pg.20]

Similar results have been obtained with other ketones such as 2-octanone, acetophenone, and benzophenone. The basis for catalyst deactivation remains under study, together with alternative fiuoropolymer supports [59]. Analogous adsorption phenomena have been found with other fiuorous metal complexes, as will be detailed in future reports. In our opinion, there are many additional possible applications for this catalyst recovery/dehvery technology, and these are under active pursuit. [Pg.83]


See other pages where Metal catalyst recovery is mentioned: [Pg.222]    [Pg.222]    [Pg.288]    [Pg.469]    [Pg.180]    [Pg.238]    [Pg.534]    [Pg.80]    [Pg.4]    [Pg.72]    [Pg.113]    [Pg.46]    [Pg.267]    [Pg.320]    [Pg.475]    [Pg.74]    [Pg.76]    [Pg.110]    [Pg.473]    [Pg.348]    [Pg.124]    [Pg.390]    [Pg.574]    [Pg.575]    [Pg.1416]    [Pg.1422]    [Pg.1463]    [Pg.260]    [Pg.67]    [Pg.144]    [Pg.13]   
See also in sourсe #XX -- [ Pg.797 ]




SEARCH



Catalyst recovery

© 2024 chempedia.info