Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melt intercalation, silicate nanocomposites

The masterbatch process allows to obtain PCL intercalated silicate nanocomposites, even with natural Cloisite Na , and it even leads to partially intercalated/partially exfoliated structure when using a masterbatch filled with Cloisite 30B. Stiffness of PCL nanocomposites is significantly improved as compared to microcomposites directly prepared by melt intercalation. As expected, the thermal stability of these nanocomposites is... [Pg.343]

XRD was used to investigate the spacings of silicate layers of montmorillonite (from 1.9 to 4nm) in PP/montmorillonite (MMT) nanocomposites prepared by in situ graft-intercalation in the presence of acrylamide [331]. Similarly, XRD and TEM were used to study the dispersibility of PP/MMT nanocomposites prepared by melt intercalation using organo-montmorillonite and conventional twin screw extrusion [332]. Various delaminated and intercalated polymer (PA6, PA 12, PS,... [Pg.646]

Since the possibility of direct melt intercalation was first demonstrated [11], melt intercalation has become a method of preparation of the intercalated polymer/ layered silicate nanocomposites (PLSNCs). This process involves annealing, statically or under shear, a mixture of the polymer and organically modified layered fillers (OMLFs) above the softening point of the polymer. During annealing, the polymer chains diffused from the bulk polymer melt into the nano-galleries between the layered fillers. [Pg.272]

Pantoustier, N., Alexandre, M., Degee, P, Calberg, C., Jerome, R., Henrist, C., et al. (2001). Poly(3-caprolactone) layered silicate nanocomposites effect of clay surface modifiers on the melt intercalation process. e-Polymer, 9, 1-9. [Pg.443]

Vaia, R. A., Vasudevan, S., Krawiec, W., Scanlon, L. G., and Giannelis, E. P. New polymer electrolyte nanocomposites Melt intercalation of poly(ethylene oxide) in mica-type silicates, Adv. Mater. (1995), 7, 154-156. [Pg.297]

In the case of mica-type layered silicates it has been recently demonstrated that nanocomposites (both intercalated and delaminated) can be synthesized by direct melt intercalation even with high molecular weight polymers [7-18]. This synthetic method is quite general and is broadly applicable to a range of commodity polymers from essentially non-polar polystyrene, to weakly polar polyethylene terephthalate), to strongly polar nylon. Nanocomposites can, therefore, be processed using currently available techniques such as extrusion, thus lowering the barrier towards commercialization. [Pg.109]

Rheology of various polymer layered-silicate nanocomposites - intercalated, exfoliated and end-tethered exfoliated (prepared by in-situ polymerization from reactive groups tethered to the silicate surface), have been performed in a conventional melt-state rheometer in both oscillatory and steady shear modes. These experimental studies have provided insight into the relaxation of polymer chains when confined by the layers of inorganic silicates, as well as the role of shear in orienting the layered nanocomposites. [Pg.131]

Intercalation of poly(ethylene oxide) into a lithium-ion exchanged clay gives an interesting class of layered silicate nanocomposites that are lithium-ion electrolytes. Componnds have been prepared by intercalation from methanol/water solutions and by melt intercalation. Melt intercalation typically gives samples with higher polymer contents than the solution method and with higher lithium-ion conductivity though the conductivity is probably stiU too low for practical applications. [Pg.1772]

Choi, M.H. In, J. Mechanical and thermal properties of phenolic resin-layered silicate nanocomposites synthesized by melt intercalation. J. Appl. Polym. Sci. 2003, 90 (9), 2316-2321. [Pg.2100]

Vaia, R.A. Jandt, K.D. Kramer, E.J. Giannelis, E.P. Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem. Mater. 1996, 8, 2628-2635. [Pg.2312]

Polypropylene (PP) is one of the most widely used plastics in large volume. To overcome the disadvantages of PP, such as low toughness and low service temperature, researchers have tried to improve the properties with the addition of nanoparticles that contains p>olar functional groups. An alkylammonium surfactant has been adequate to modify the clay surfaces and promote the formation of nanocomposite structure. Until now, two major methods, i.e., in-situ polymerization( Ma et al., 2001 Pirmavaia, 2000) and melt intercalation ( Manias et al.,2001) have been the techniques to prepare clay/PP nanocomposites. In the former method, the clay is used as a catalyst carrier, propylene monomer intercalates into the interlayer space of the clay and then polymerizes there. The macromolecule chains exfoliate the silicate layers and make them disperse in the polymer matrix evenly. In melt intercalation, PP and organoclay are compounded in the molten state to form nanocomposites. [Pg.272]

Layered siUcate/polypropylene nanocomposites were prepared by melt intercalation method. Homopolymers PP alone and maleic anhydride-grafted polypropylene (PPgMA) as a compatibiUzer were used as the matrix. Clay (Na montmorillonite, MMT) particles were used to obtain silicate nano-layers within the PP matrix. Structural modification of MMT... [Pg.275]

The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers improve and hence this has a lot of applications depending upon the inorganic material present in the polymers. The improvements obtained in day/PP nanocomposite structure can make this commercial thermoplastic polymer more suitable for automotive, construction and packaging applications. Different alkyl ammonium surfactants and compatibilizer was used to produce layered silicate/PP nanocomposites by the same melt intercalation technique. [Pg.282]

Vaia RA, Jant KD, Kramer EJ, Giaimelis EP.(1996). Microstructural evaluation of melt-intercalated polymer-organically modified layered silicate nanocomposites. Chem Mater. 8 2628-35. [Pg.286]

Choi and Chung [16] were the first to prepare phenolic resin/layered sihcate nanocomposites with intercalated or exfoliated nanostructures by melt interaction using linear novolac and examined their mechanical properties and thermal stability. Lee and Giannelis [10] reported a melt interaction method for phenolic resin/clay nanocomposites, too. Although PF resin is a widely used polymer, there are not many research reports on PF resin/montmorillonite nanocomposites, and most of the research investigations have concentrated on linear novolac resins. Up to now, only limited research studies on resole-type phenolic resin/layered silicate nanocomposites have been published [17-19] and there is still no report on the influence of nano-montmorillonite on phenolic resin as wood adhesive. Normally H-montmorillonite (HMMT) has been used as an acid catalyst for the preparation of novolac/layered silicate nanocomposites. Resole resins can be prepared by condensation reaction catalyzed by alkaline NaMMT, just as what HMMT has done for novolac resins. [Pg.237]

Several techniques such as intercalation of polymer from solution, in-situ intercalative polymerization, melt intercalation, direct mixture of polymer and particulates, template synthesis, in-situ polymerization and solgel process, are being employed for the preparation of polmer-layered silicate nanocomposites. Among them the most common and important approaches are in-situ polymerization, solution-induced intercalation method, and melt processing method, which are briefly discussed below. [Pg.203]

Intercalation/exfoliation of biodegradable polymer macromolecules in layered hosts, such as layered silicates, has been proved as an effective method to synthesize polymer layered silicate nanocomposites. Methods like solution intercalation, in-situ synthesis and melt intercalation have emerged as successful methods to prepare biodegradable polymer layered silicate nanocomposites. [Pg.407]

Recently, Ahmadi et al. [320] prepared EPDM/clay nanocomposites with organoclay that was intercalated with MA-grafted EPDM (MA-g-EPDM) and EPDM-clay composites with pristine clay via indirect melt intercalation method. Authors characterized the dispersion of the silicate layers in the EPDM matrix by XRD and TEM analysis methods. They showed that the particles of organoclay were completely exfoliated in EPDM matrix, and the mechanical, thermal, and chemical properties of nanocomposites were significantly improved compared with conventional composites. [Pg.106]


See other pages where Melt intercalation, silicate nanocomposites is mentioned: [Pg.659]    [Pg.667]    [Pg.285]    [Pg.89]    [Pg.296]    [Pg.121]    [Pg.2097]    [Pg.2098]    [Pg.2100]    [Pg.2307]    [Pg.340]    [Pg.416]    [Pg.14]    [Pg.279]    [Pg.281]    [Pg.44]    [Pg.408]    [Pg.409]    [Pg.410]    [Pg.411]    [Pg.6]    [Pg.56]    [Pg.68]    [Pg.96]    [Pg.98]    [Pg.99]    [Pg.104]    [Pg.106]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Intercalated nanocomposites

Intercalation nanocomposites

Melt intercalation

Nanocomposite intercalated

Nanocomposite silicate

Silicate intercalates

Silicate melt

© 2024 chempedia.info