Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry polymer extracts

Other technique—for example, dynamic secondary ion mass spectrometry or forward recoil spectrometry—that rely on mass differences can use the same type of substitution to provide contrast. However, for hydrocarbon materials these methods attain a depth resolution of approximately 13 nm and 80 nm, respectively. For many problems in complex fluids and in polymers this resolution is too poor to extract critical information. Consequently, neutron reflectivity substantially extends the depth resolution capabilities of these methods and has led, in recent years, to key information not accessible by the other techniques. [Pg.660]

Selective extractions are not only of interest to solvent extraction, but also to thermal extractions. For example, selective in situ detection of polymer additives is possible using laser mass spectrometry, notably UV laser desorption/MS [561]. The proper matching of extraction technique to a sample determines the success of the operation and enhances the precision and accuracy of the analysis. [Pg.139]

Applications Early MS work on the analysis of polymer additives has focused on the use of El, Cl, and GC-MS. The major drawback to these methods is that they are limited to thermally stable and relatively volatile compounds and therefore are not suitable for many high-MW polymer additives. This problem has largely been overcome by the development of soft ionisation techniques, such as FAB, FD, LD, etc. and secondary-ion mass spectrometry. These techniques all have shown their potential in the analysis of additives from solvent extract and/or from bulk polymeric material. Although FAB has a reputation of being the most often used soft ionisation method, Johlman el al. [83] have shown that LD is superior to FAB in the analysis of polymer additives, mainly because polymer additives fragment extensively under FAB conditions. [Pg.370]

Recently, Lattimer et al. [22,95] advocated the use of mass spectrometry for direct analysis of nonvolatile compounding agents in polymer matrices as an alternative to extraction procedures. FAB-MS was thus applied as a means for surface desorption/ionisation of vulcanisates. FAB is often not as effective as other ionisation methods (El, Cl, FI, FD), and FAB-MS is not considered particularly useful for extracted rubber additives analysis compared to other methods that are available [36], The effectiveness of the FAB technique has been demonstrated for the analysis of a live-component additive mixture [96]. [Pg.371]

Analysis of polymer additives by mass spectrometry has, for the most part, been limited to molecular weight determination of the solvent-extracted components [4,254], Field desorption is a good ionisation... [Pg.411]

In an acetone extract from a neoprene/SBR hose compound, Lattimer et al. [92] distinguished dioctylph-thalate (m/z 390), di(r-octyl)diphenylamine (m/z 393), 1,3,5-tris(3,5-di-f-butyl-4-hydroxybenzyl)-isocyanurate m/z 783), hydrocarbon oil and a paraffin wax (numerous molecular ions in the m/z range of 200-500) by means of FD-MS. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out (Chapter 2). The method of Dinsmore and Smith [257], or a modification thereof, is normally used. Mass spectrometry (and other analytical techniques) is then used to characterise the various rubber fractions. The mass-spectral identification of numerous antioxidants (hindered phenols and aromatic amines, e.g. phenyl-/ -naphthyl-amine, 6-dodecyl-2,2,4-trimethyl-l,2-dihydroquinoline, butylated bisphenol-A, HPPD, poly-TMDQ, di-(t-octyl)diphenylamine) in rubber extracts by means of direct probe EI-MS with programmed heating, has been reported [252]. The main problem reported consisted of the numerous ions arising from hydrocarbon oil in the recipe. In older work, mass spectrometry has been used to qualitatively identify volatile AOs in sheet samples of SBR and rubber-type vulcanisates after extraction of the polymer with acetone [51,246]. [Pg.411]

Also, direct determination of additives by means of laser desorption in solid polymeric materials rather than in polymer extracts has been reported [266], Takayama et al. [267] have described the direct detection of additives on the surface of LLDPE/(Chimassorb 944 LD and Irgafos P-EPQ) after matrix (THAP)-coating. As shown in Scheme 7.13, direct inlet mass spectrometry is also applicable to transfer TLC-MS and TLC-MS/MS analyses without the need for prior analysis. For direct sample introduction a small amount of the selected... [Pg.413]

Using MS detection relaxes the constraints on LC resolution, because additional separation occurs in the mass domain. In principle, LC-MS may yield a complete 2D distribution of a polymer according to chemical composition and molar mass. If MS detection is employed, the efficient cleaning in the LC step makes it possible to use total ion monitoring and even to identify unknown compounds from the sample. As extracts often contain interfering compounds, mass spectrometry in selective ion mode is a practical detector. Fully automated multidimensional LC-MS-MS-MS systems are available. [Pg.555]

Desorption chemical ionisation (DCI) mass spectrometry has been used for detecting additives extracted from polymers [51,52] by a solvent as volatile as possible. To use the DCI probe, 1 -2 iL of the sample, in solution, are applied to the probe tip, composed of a small platinum coil, and after the solvent has been allowed to evaporate at room temperature, the probe is inserted into the source. The sample is then subject to fast temperature ramping. DCI does not seem to be the most suitable mass-spectrometric method for analysis of dissolved polymer/additive matrices, because ... [Pg.702]

A toluene solution of polymer 15 was added to an aqueous mixture of peptides. After effective equUibration, the heterogeneous mixture was allowed to separate and the organic layer was analyzed by matrix assisted laser desorption ionization mass spectrometry analysis. Because the pH of the aqueous solution was 7.1, the peptides with pis above 7.1 were extracted and the peptides with pis below 7.1... [Pg.28]

Schoenmakers et al. [72] analyzed two representative commercial rubbers by gas chromatography-mass spectrometry (GC-MS) and detected more than 100 different compounds. The rubbers, mixtures of isobutylene and isoprene, were analyzed after being cryogenically grinded and submitted to two different extraction procedures a Sohxlet extraction with a series of solvents and a static-headspace extraction, which entailed placing the sample in a 20-mL sealed vial in an oven at 110°C for 5,20, or 50 min. Although these are not the conditions to which pharmaceutical products are submitted, the results may give an idea of which compounds could be expected from these materials. Residual monomers, isobutylene in the dimeric or tetrameric form, and compounds derived from the scission of the polymeric chain were found in the extracts. Table 32 presents an overview of the nature of the compounds identified in the headspace and Soxhlet extracts of the polymers. While the liquid-phase extraction was able to extract less volatile compounds, the headspace technique was able to show the presence of compounds with low molecular mass... [Pg.507]

Combining the results of NMR, low voltage mass spectrometry, (Table I), and gas chromatography (Figures 3-7) with the undisputed fact that the low molecular weight extractable fractions can be polymer-... [Pg.431]

It is possible to use techniques in which the additives can be determined by direct analysis of the sample, such as nuclear magnetic resonance (NMR) spectrometry, ultraviolet (UV) spectrometry, and UV desorption-mass spectrometry. These techniques are very useful when the concentrations of additives in the polymer are high. However, when additives are present in trace levels, it is necessary to carry out a preliminary extraction/concentration step before analysis. Some of the most common additives used in plastics materials are presented in Table 1. [Pg.1228]

In this review we have summarized the results obtained by different chromatographic techniques and a variety of sample preparation methods for the analysis of antioxidants in polymers and in solutions. Efficient techniques including liquid and gas chromatography, mass spectrometry, traditional low pressure extraction techniques and newer high pressure techniques have been developed. These have made possible the accurate quantification and identification of antioxidants. The newer techniques offer versatile tools for further developments in this area of polymer analysis. [Pg.153]


See other pages where Mass spectrometry polymer extracts is mentioned: [Pg.17]    [Pg.411]    [Pg.411]    [Pg.451]    [Pg.475]    [Pg.702]    [Pg.742]    [Pg.173]    [Pg.76]    [Pg.224]    [Pg.27]    [Pg.199]    [Pg.420]    [Pg.392]    [Pg.61]    [Pg.662]    [Pg.930]    [Pg.1069]    [Pg.1091]    [Pg.122]    [Pg.161]    [Pg.358]    [Pg.125]    [Pg.122]    [Pg.95]    [Pg.5]    [Pg.71]    [Pg.60]    [Pg.1709]    [Pg.1229]    [Pg.498]    [Pg.463]    [Pg.36]    [Pg.224]    [Pg.120]    [Pg.126]   
See also in sourсe #XX -- [ Pg.45 , Pg.46 ]




SEARCH



Mass polymers

Polymer Extractables

Polymer extraction

Polymers mass spectrometry

Polymers spectrometry

© 2024 chempedia.info