Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers spectrometry

Isopropyl group (Section 2 13) The group (CH3)2CH— Isotactic polymer (Section 7 15) A stereoregular polymer in which the substituent at each successive chirality center is on the same side of the zigzag carbon chain Isotopic cluster (Section 13 22) In mass spectrometry a group of peaks that differ in m/z because they incorporate differ ent isotopes of their component elements lUPAC nomenclature (Section 2 11) The most widely used method of naming organic compounds It uses a set of rules proposed and periodically revised by the International Union of Pure and Applied Chemistry... [Pg.1287]

Montaudo, G. and Lattimer, R.P., Mass Spectrometry of Polymers, CRC Press, Boca Raton, FL, 2001. Montaser, A., Inductively Coupled Plasma Mass Spectrometry, Wiley, Chichester, U.K., 1998. [Pg.451]

The incidence of these defects is best determined by high resolution F nmr (111,112) infrared (113) and laser mass spectrometry (114) are alternative methods. Typical commercial polymers show 3—6 mol % defect content. Polymerization methods have a particularly strong effect on the sequence of these defects. In contrast to suspension polymerized PVDF, emulsion polymerized PVDF forms a higher fraction of head-to-head defects that are not followed by tail-to-tail addition (115,116). Crystallinity and other properties of PVDF or copolymers of VDF are influenced by these defect stmctures (117). [Pg.387]

Latexes of synthetic resins are identified by ir spectrometry. Selective extraction with organic solvents is used to obtain purified fractions of the polymers for spectrometric identification. Polymeric films can be identified by the multiple internal reflectance ir technique, if the film is smooth enough to permit intimate contact with the reflectance plate. TAPPI and ASTM procedures have not been written for these instmmental methods, because the interpretation of spectra is not amenable to standardization. [Pg.11]

Styryl sulfonyl chloride Friedel-Crafts cyclization benzo[h]thiophenes from, 4, 873 Succinic anhydrides polymers, I, 277 mass spectrometry, 4, 585 structure, 4, 552... [Pg.846]

Fast concentration and sample injection are considered with the use of a theory of vibrational relaxation. A possibility to reduce a detection limit for trinitrotoluene to 10 g/cnf in less than 1 min is shown. Such a detection limit can by obtained using selective ionization combined with ion drift spectrometry. The time of detection in this case is 1- 3 s. A detection technique based on fluorescent reinforcing polymers, when the target molecules strongly quench fluorescence, holds much promise for developing fast detectors. [Pg.165]

Other technique—for example, dynamic secondary ion mass spectrometry or forward recoil spectrometry—that rely on mass differences can use the same type of substitution to provide contrast. However, for hydrocarbon materials these methods attain a depth resolution of approximately 13 nm and 80 nm, respectively. For many problems in complex fluids and in polymers this resolution is too poor to extract critical information. Consequently, neutron reflectivity substantially extends the depth resolution capabilities of these methods and has led, in recent years, to key information not accessible by the other techniques. [Pg.660]

Raman spectrometry is another variant which has become important. To quote one expert (Purcell 1993), In 1928, the Indian physicist C.V. Raman (later the first Indian Nobel prizewinner) reported the discovery of frequency-shifted lines in the scattered light of transparent substances. The shifted lines, Raman announced, were independent of the exciting radiation and characteristic of the sample itself. It appears that Raman was motivated by a passion to understand the deep blue colour of the Mediterranean. The many uses of this technique include examination of polymers and of silicon for microcircuits (using an exciting wavelength to which silicon is transparent). [Pg.234]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Jones, F.R., Interfacial aspects of glass fibre reinforced plastics. In Jones, F.R. (Ed.), Interfacial Phenomena in Composite Materials. Butterworths, London, 1989, pp. 25-32. Chaudhury, M.K., Gentle, T.M. and Plueddemann, E., Adhesion mechanism of poly(vinyl chloride) to silane primed metal surfaces. J. Adhes. Sci. Technol, 1(1), 29-38 (1987). Gellman, A.J., Naasz, B.M., Schmidt, R.G., Chaudhury, M.K, and Gentle, T.M., Secondary neutral mass spectrometry studies of germanium-silane coupling agent-polymer interphases. J. Adhes. Sci. Technol., 4(7), 597-601 (1990). [Pg.709]

Low ionizing potentials or soft ionization methods are necessary to observe the parent ions in the mass spectra of many S-N compounds because of their facile thermal decomposition. Mass spectrometry has been used to investigate the thermal breakdown of S4N4 in connection with the formation of the polymer (SN). On the basis of the appearance potentials of various S Ny fragments, two important steps were identified ... [Pg.47]

H. J. Goites, B. M. Bell, G. D. Pfeiffer and J. D. Graham, Multidimensional chromatography using on-line coupled microcolumn size exclusion cliromatography-capillary gas chromatography-mass spectrometry for determination of polymer additives , J. Microcolumn Sep. 1 278-288. (1989)... [Pg.332]

Thermogravimetric analysis has also been used in conjunction with other techniques, such as differential thermal analysis (DTA), gas chromatography, and mass spectrometry, for the study and characterisation of complex materials such as clays, soils and polymers.35... [Pg.433]

Two relatively new techniques, matrix assisted laser desorption ionization-lime of flight mass spectrometry (MALDI-TOF) and electrospray ionization (FS1), offer new possibilities for analysis of polymers with molecular weights in the tens of thousands. PS molecular weights as high as 1.5 million have been determined by MALDI-TOF. Recent reviews on the application of these techniques to synthetic polymers include those by Ilantoif54 and Nielen.555 The methods have been much used to provide evidence for initiation and termination mechanisms in various forms of living and controlled radical polymerization.550 Some examples of the application of MALDI-TOF and ESI in end group determination are provided in Table 3.12. The table is not intended to be a comprehensive survey. [Pg.143]

Table 3.12 Application of MALDI-TOF or ESI Mass Spectrometry to Polymers Prepared by Radical Polymerization... Table 3.12 Application of MALDI-TOF or ESI Mass Spectrometry to Polymers Prepared by Radical Polymerization...
Advanced techniques like molecularly imprinted polymers (MIPs), infrared/near infrared spectroscopy (FT-IR/NIR), high resolution mass spectrometry, nuclear magnetic resonance (NMR), Raman spectroscopy, and biosensors will increasingly be applied for controlling food quality and safety. [Pg.314]


See other pages where Polymers spectrometry is mentioned: [Pg.1328]    [Pg.1851]    [Pg.12]    [Pg.201]    [Pg.301]    [Pg.20]    [Pg.112]    [Pg.397]    [Pg.233]    [Pg.444]    [Pg.548]    [Pg.606]    [Pg.742]    [Pg.776]    [Pg.236]    [Pg.415]    [Pg.553]    [Pg.536]    [Pg.48]    [Pg.28]    [Pg.143]    [Pg.454]    [Pg.609]    [Pg.133]    [Pg.237]    [Pg.490]    [Pg.132]    [Pg.76]    [Pg.178]    [Pg.105]    [Pg.231]    [Pg.153]    [Pg.382]   
See also in sourсe #XX -- [ Pg.6 , Pg.342 ]




SEARCH



Application of MALDI-TOF or ESI Mass Spectrometry to Polymers Prepared by Radical Polymerization

Fourier transform mass spectrometry , polymer

Laser ablation mass spectrometry , polymer

Mass spectrometry intractable polymers

Mass spectrometry polymer analysis

Mass spectrometry polymer characterization using

Mass spectrometry polymer extracts

Polymer Analysis 1 Infrared spectrometry

Polymer analysis tandem mass spectrometry

Polymer chemistry tools spectrometry

Polymers diode laser spectrometry

Polymers mass spectrometry

Polymers, liquid interaction spectrometry

© 2024 chempedia.info