Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soft ionisation

Tandem mass spectrometry or ms/ms was first introduced in the 1970s and gained rapid acceptance in the analytical community. The technique has been used for stmcture elucidation of unknowns (26) and has the abiUty to provide sensitive and selective analysis of complex mixtures with minimal sample clean-up (27). Developments in the mid-1980s advancing the popularity of ms/ms included the availabiUty of powerhil data systems capable of controlling the ms/ms experiment and the viabiUty of soft ionisation techniques which essentially yield only molecular ion species. [Pg.405]

Recent attention has focused on MS for the direct analysis of polymer extracts, using soft ionisation sources to provide enhanced molecular ion signals and less fragment ions, thereby facilitating spectral interpretation. The direct MS analysis of polymer extracts has been accomplished using fast atom bombardment (FAB) [97,98], laser desorption (LD) [97,99], field desorption (FD) [100] and chemical ionisation (Cl) [100]. [Pg.46]

Alternative approaches consist in heat extraction by means of thermal analysis, thermal volatilisation and (laser) desorption techniques, or pyrolysis. In most cases mass spectrometric detection modes are used. Early MS work has focused on thermal desorption of the additives from the bulk polymer, followed by electron impact ionisation (El) [98,100], Cl [100,107] and field ionisation (FI) [100]. These methods are limited in that the polymer additives must be both stable and volatile at the higher temperatures, which is not always the case since many additives are thermally labile. More recently, soft ionisation methods have been applied to the analysis of additives from bulk polymeric material. These ionisation methods include FAB [100] and LD [97,108], which may provide qualitative information with minimal sample pretreatment. A comparison with FAB [97] has shown that LD Fourier transform ion cyclotron resonance (LD-FTTCR) is superior for polymer additive identification by giving less molecular ion fragmentation. While PyGC-MS is a much-used tool for the analysis of rubber compounds (both for the characterisation of the polymer and additives), as shown in Section 2.2, its usefulness for the in situ in-polymer additive analysis is equally acknowledged. [Pg.46]

Ionisation11 method Hard ionisation Soft ionisation ... [Pg.357]

Table 6.10 reports the main areas of application of the various ionisation methods and the principal ions detected. A breakdown of MS techniques applied to various types of analytes is as follows thermally stable, low-MW Cl, El thermally instable, low-MW APCI (FLA, LC-MS), ESI and high-MW DCI, FD, FAB, LD, ESI (FLA, LC-MS, CZE-MS). Soft ionisation techniques such as FL, FAB and LD are useful for the detection of non-volatile, sometimes oligomeric, polymer additives. Recent developments in ionisation techniques have allowed the analysis of polar, ionic, and high-MW compounds, previously not amenable to mass-spectrometric analysis. Figure 6.4 shows the applicability of various atmospheric pressure ionisation techniques in terms of molar mass and polarity. [Pg.359]

The DCI probe is particularly attractive for samples that are susceptible to thermal decomposition, although it can equally well be used as a general means of introducing samples into the ionisation source, i.e. as an alternative to the direct insertion probe. The types of sample which benefit most from DCI probing are higher-molecular-weight, less-volatile compounds, organometallics, and any thermally sensitive compounds [40,67]. DCI is considered to be a soft ionisation technique. [Pg.364]

Generally FAB produces protonated, MH+, or depro-tonated, (M — H) , quasi-molecular ions with a little excess energy which will sometimes produce fragment ions of low intensity. FAB is therefore a mild to soft ionisation technique which produces primarily molecular weight information and some structural information. Positive and negative ionisation mass spectra are produced with equal facility. FAB was originally used with magnetic sector mass spectrometers, but lately mainly with quadrupole mass spectrometers (Table 6.10). [Pg.368]

Applications Early MS work on the analysis of polymer additives has focused on the use of El, Cl, and GC-MS. The major drawback to these methods is that they are limited to thermally stable and relatively volatile compounds and therefore are not suitable for many high-MW polymer additives. This problem has largely been overcome by the development of soft ionisation techniques, such as FAB, FD, LD, etc. and secondary-ion mass spectrometry. These techniques all have shown their potential in the analysis of additives from solvent extract and/or from bulk polymeric material. Although FAB has a reputation of being the most often used soft ionisation method, Johlman el al. [83] have shown that LD is superior to FAB in the analysis of polymer additives, mainly because polymer additives fragment extensively under FAB conditions. [Pg.370]

Principles and Characteristics The pioneering technique of field ionisation (FI) was the first soft ionisation technique, introduced in 1954 [105]. For FI analysis of a reasonably volatile sample, the compound under investigation is volatilised by heat close to the emitter, so that its vapour can condense on to an emitter needle. Hence,... [Pg.372]

Soft ionisation (fairly high molecular ion abundances)... [Pg.373]

Although FD was one of the earliest forms of soft ionisation, poor sensitivity and limited applicability have restricted the impact of the approach in the mainstream of mass spectrometry. More recently, many of the application areas of FD and FI have been appropriated by FAB-MS, which is generally considered to be a technique that requires less expertise alternatively, laser desorption is frequently being applied. FD-MS is only used in a handful of laboratories worldwide. The technique has recently been reviewed [107], and is subject of various monographs [108,112],... [Pg.375]

Thermospray (TSP) is another soft ionisation technique which produces predominantly MH+ or (M — H) ions, together with some fragmentation. TSP is best suited to the analysis of organic compounds of low molecular mass (<1000 Da) that exhibit some polarity. Polymer additive molecules fall in this wide category. [Pg.377]

The process of ion formation is extremely soft usually no fragmentation occurs. Mass spectra in ESI+ mode are dominated by pseudo-molecular ions (M+, [M + H] + or [M + Na]+) and cluster ions formed by the addition of one or more solvent molecules. For samples with molecular masses up to ca. 1000 Da (as in case of polymer additives), the ions produced from ESI are similar to those formed by other soft ionisation techniques, namely a protonated molecular ion (MH+) in the positive ionisation mode for basic compounds such... [Pg.379]

MS/MS has especially found analytical applications in combination with soft ionisation techniques, where, without MS/MS, only molecular weight information on... [Pg.399]

The principle of MS/MS for direct analysis of a multicomponent system is shown in Figure 6.18, in which the first mass spectrometer (MS I) operates with soft ionisation (FI, FD, Cl, LD), and thus produces an ensemble of molecular ions (M + H+, M — H+, or adducts). For identification of molecule ABC only ABC+ is allowed to enter an interface or fragmentation zone for excitation by collisional activation, laser radiation or surface-induced dissociation. Within the time of one vibration (10-13s), ABC+ dissociates into fragments characterising the original molecule. They are separated and detected by MS II [226]. Soft ionisation with FI/FD produces low ion yields, which may be insufficient for MS/MS LVEI (typically at 20 V) can be an alternative. Complete analysis of a multicomponent system is carried out in some 20 min. [Pg.399]

Direct polymer compound analysis by soft ionisation, tandem MS/MS and high-resolution (AC-MS) mass spectrometry, has been reviewed [236]. [Pg.406]

Direct solid-state polymer/additive mass analysis has involved various ionisation modes El (Section 6.2.1), Cl (Section 6.2.2), DCI (Section 6.2.2.1), FAB (Section 6.2.4), FI (Section 6.2.5), FD (Section 6.2.6) and LD. Survey mass spectra obtained with soft ionisation methods (FI-MS, CI-MS) provide diagnostic overviews of chemical composition. The supplemental tandem (MS/MS) and atomic composition (AC-MS) techniques are used to make specific identifications of various organic ingredients. Direct analysis of polymer systems for more than a few thousand daltons has only just begun. Ionisation methods employed are FD, ESI and MALDI. Solid-probe ToF-MS (or DI-HRMS) is a breakthrough [188]. [Pg.412]

Applications With the current use of soft ionisation techniques in LC-MS, i.e. ESI and APCI, the application of MS/MS is almost obligatory for confirmatory purposes. However, an alternative mass-spectrometric strategy may be based on the use of oaToF-MS, which enables accurate mass determination at 5 ppm. This allows calculation of the elemental composition of an unknown analyte. In combination with retention time data, UV spectra and the isotope pattern in the mass spectrum, this should permit straightforward identification of unknown analytes. Hogenboom et al. [132] used such an approach for identification and confirmation of analytes by means of on-line SPE-LC-ESI-oaToFMS. Off-line SPE-LC-APCI-MS has been used to determine fluorescence whitening agents (FWAs) in surface waters of a Catalan industrialised area [138]. Similarly, Alonso et al. [139] used off-line SPE-LC-DAD-ISP-MS for the analysis of industrial textile waters. SPE functions here mainly as a preconcentration device. [Pg.448]

ESI and APCI are soft ionisation techniques which usually result in quasi-molecular ions such as [M + H]+ with little or no fragmentation molecular weight information can easily be obtained. However, experimental conditions can also be chosen in such a way that a sufficiently characteristic pattern is obtained, allowing verification [540]. ESI is amenable to thermally labile and nonvolatile molecules. Both ESI and APCI are much more sensitive than PB and very well suited for quantitative analysis, but less so for unknown samples. The choice among the two is usually determined by the application. Recently, nanoscale LC-ESI-MS has been developed [541]. The nano-electrospray ion source offers the highest sensitivity available for LC-MS (atto-to femtomole range) and can also be used as an off-line ion source. [Pg.505]

Soft ionisation modes, such as API, which leave the (pseudo)molecular ion intact without much fragmentation, offer more sensitivity, and are ideal for quantitative work at low levels (e.g. breakdown products). With the use of soft ionisation techniques in LC-MS, tandem MS... [Pg.507]

LC-tandem MS was recently used for polymer/additive characterisation. In cases of soft ionisation processes (e.g. ESI, APCI, etc.), MS/MS is often necessary to confirm the ionic species. QITMS has the potential to improve the detection limits for organotin analysis compared to QMS. HPLC-UV and LC-API-MS/MS have been employed for the characterisation of the products of photodegradation of benzotriazole-based UV absorbers (Tinuvin P/328/900) under mild conditions [642]. Among the photoproducts identified... [Pg.519]

In specific cases, when long chain compounds such as esters and TAGs have survived and have not yet been hydrolysed or oxidised, it may be useful to carry out soft ionisation techniques in order to fully characterise the structure of these biomarkers by direct infusion into an electrospray source after adapted purification treatments. [Pg.98]


See other pages where Soft ionisation is mentioned: [Pg.535]    [Pg.269]    [Pg.363]    [Pg.363]    [Pg.364]    [Pg.368]    [Pg.373]    [Pg.374]    [Pg.381]    [Pg.383]    [Pg.400]    [Pg.402]    [Pg.405]    [Pg.406]    [Pg.408]    [Pg.411]    [Pg.411]    [Pg.412]    [Pg.461]    [Pg.465]    [Pg.505]    [Pg.506]    [Pg.506]    [Pg.506]    [Pg.509]    [Pg.509]    [Pg.540]    [Pg.760]    [Pg.760]   
See also in sourсe #XX -- [ Pg.47 , Pg.53 ]

See also in sourсe #XX -- [ Pg.332 ]




SEARCH



Interface soft ionisation

Ionisation

Ionised

Mass spectrometry soft ionisation techniques

Soft ionisation technique

Soft ionisation, mass spectrometry

Spectrometry soft ionisation

Tandem soft ionisation techniques

Thermospray soft ionisation

© 2024 chempedia.info