Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction liquid phase

There are many types of phase diagrams in addition to the two cases presented here these are summarized in detail by Zief and Wilcox (op. cit., p. 21). Solid-liquid phase equilibria must be determined experimentally for most binaiy and multicomponent systems. Predictive methods are based mostly on ideal phase behavior and have limited accuracy near eutectics. A predic tive technique based on extracting liquid-phase activity coefficients from vapor-liquid equilib-... [Pg.1990]

The equilibrium tie-line intersect on curve segment D,R,P represents a feed-raffinate three-component liquid composition (wt%) in equilibrium with the same tie-line intersect point on curve segment P,E,M. This P,E,M curve point is the three-component composition solvent-extract liquid phase. [Pg.262]

All points on curve segments D,R,P (the feed-raffinate liquid phase) and P,E,M (the solvent-extract liquid phase) are discrete, separate, and immiscible liquid phases. [Pg.263]

A combination of sohd-phase extraction, liquid-phase extraction, and the use of solution scavengers has been employed for the synthesis of thiazole libraries (Scheme 22) [57]. [Pg.28]

O-ethyl <9-(4-nitrophenyl) phenylphosphonothionate Office of Ground Water and Drinking Water organophosphorus pesticides liquid-liquid micro extraction liquid phase micro extraction... [Pg.882]

ExxonMobil Chemical Technology Licensing LLC Aromatics treatment Heavy reformate or aromatic extract Liquid-phase aromatics treatment for olefins removal 8 2008... [Pg.294]

Different sample pretreatment operations include dilution, membrane-extraction (gas diffusion, dialysis), liquid-phase extraction techniques (liquid/liquid extraction, liquid-phase microextraction, single-drop microextraction) and solid reactors and packed columns aiming to facilitate online chemical derivatization, chromatographic separation of target species, removal of interfering matrix compounds, enzymatic assays, or determination of trace levels of analyte via sorptive preconcentration procedures (Marshall et al., 2003 Economou, 2005 Miro and Hansen, 2006 Theodoridis et al., 2007 McKelvie, 2008 Ruzicka, 2014). In this context, BIA and the LOV configurations are particularly useful. Acid-base titrations can also be automated using simple SIA manifolds and potentiometric (van Staden et al., 2002) or photometric (Kozak et al., 2011) detection. Typically, a zone of the sample to be titrated is sandwiched between two zones of titrant by aspiration. In the case of photometric detection, an additional zone of a suitable pH-sensitive colored indicator is aspirated. The stacked zones are delivered to the detector and the width of the peaks is monitored and related to the pH of the solution. [Pg.44]

We have repeatedly observed that the slowly converging variables in liquid-liquid calculations following the isothermal flash procedure are the mole fractions of the two solvent components in the conjugate liquid phases. In addition, we have found that the mole fractions of these components, as well as those of the other components, follow roughly linear relationships with certain measures of deviation from equilibrium, such as the differences in component activities (or fugacities) in the extract and the raffinate. [Pg.124]

The aromaUc extracts are sought mainly tor their solvent power. They are characterized particularly by componential analyses such as the separation according to hydrocarbon family by liquid phase chromatography. [Pg.291]

To prepare gas for evacuation it is necessary to separate the gas and liquid phases and extract or inhibit any components in the gas which are likely to cause pipeline corrosion or blockage. Components which can cause difficulties are water vapour (corrosion, hydrates), heavy hydrocarbons (2-phase flow or wax deposition in pipelines), and contaminants such as carbon dioxide (corrosion) and hydrogen sulphide (corrosion, toxicity). In the case of associated gas, if there is no gas market, gas may have to be flared or re-injected. If significant volumes of associated gas are available it may be worthwhile to extract natural gas liquids (NGLs) before flaring or reinjection. Gas may also have to be treated for gas lifting or for use as a fuel. [Pg.249]

In a liquid-liquid extraction, the analyte (or interferent) is extracted from one liquid phase into a second, immiscible liquid phase. When the analyte is involved in secondary equilibrium reactions, it is often possible to improve selectivity by carefully adjusting the composition of one or both phases. [Pg.224]

Two approaches have been used to separate the analyte from its matrix in particulate gravimetry. The most common approach is filtration, in which solid particulates are separated from their gas, liquid, or solid matrix. A second approach uses a liquid-phase or solid-phase extraction. [Pg.263]

In Chapter 7 we examined several methods for separating an analyte from potential interferents. For example, in a liquid-liquid extraction the analyte and interferent are initially present in a single liquid phase. A second, immiscible liquid phase is introduced, and the two phases are thoroughly mixed by shaking. During this process the analyte and interferents partition themselves between the two phases to different extents, affecting their separation. Despite the power of these separation techniques, there are some significant limitations. [Pg.544]

The choice of separation method to be appHed to a particular system depends largely on the phase relations that can be developed by using various separative agents. Adsorption is usually considered to be a more complex operation than is the use of selective solvents in Hquid—Hquid extraction (see Extraction, liquid-liquid), extractive distillation, or azeotropic distillation (see Distillation, azeotropic and extractive). Consequentiy, adsorption is employed when it achieves higher selectivities than those obtained with solvents. [Pg.291]

Two-Phase Aqueous Extraction. Liquid—Hquid extraction usually involves an aqueous phase and an organic phase, but systems having two or more aqueous phases can also be formed from solutions of mutually incompatible polymers such as poly(ethylene glycol) (PEG) or dextran. A system having as many as 18 aqueous phases in equiHbrium has been demonstrated (93). Two-phase aqueous extraction, particularly useful in purifying biological species such as proteins (qv) and enzymes, can also be carried out in combination with fermentation (qv) so that the fermentation product is extracted as it is formed (94). [Pg.70]

Extractive distillation and. salt distillation. Methods that primarily modify liquid-phase behavior to alter the relative volatility of the components of the mixture. [Pg.1292]

Extractive distillation works by the exploitation of the selective solvent-induced enhancements or moderations of the liquid-phase nonidealities of the components to be separated. The solvent selectively alters the activity coefficients of the components being separated. To do this, a high concentration of solvent is necessaiy. Several features are essential ... [Pg.1313]

The solvent must be higher boiling than the key components of the separation and must be relatively nonvolatile in the extractive column, in order to remain largely in the liquid phase. [Pg.1314]

Liquid-liquid extraction is a process for separating components in solution by their distribution between two immiscible liquid phases. Such a process can also be simply referred to as liquid extraction or solvent extraction however, the latter term may be confusing because it also applies to the leaching of a soluble substance from a solid. [Pg.1448]

The feed to a liquid-liquid extraction process is the solution that contains the components to be separated. The major liquid component in the feed can be referred to as the feed solvent. Minor components in solution are often referred to as solutes. The extraction solvent, or just plain solvent, is the immiscible liquid added to a process for the purpose of extracting a solute or solutes from the feed. The extraction-solvent phase leaving a liquid-liquid contactor is called the extract. The raffinate is the liquid phase left from the feed after being contacted by the second phase. A wash solvent is a hquid added to a liquid-liquid fractionation process to wash or enrich the purity of a solute in the extract phase. [Pg.1449]

Dissociation extraction is the process of using chemical reac tion to force a solute to transfer from one liquid phase to another. One example is the use of a sodium hydroxide solution to extract phenolics, acids, or mercaptans from a hydrocarbon stream. The opposite transfer can be forced by adding an acid to a sodium phenate stream to spring the phenolic back to a free phenol that can be extrac ted into an organic solvent. Similarly, primary, secondary, and tertiary amines can be protonated with a strong acid to transfer the amine into a water solution, for example, as an amine hydrochloride salt. Conversely, a strong base can be added to convert the amine salt back to free base, which can be extracted into a solvent. This procedure is quite common in pharmaceutical production. [Pg.1450]

The separation of components by liquid-liquid extraction depends primarily on the thermodynamic equilibrium partition of those components between the two liquid phases. Knowledge of these partition relationships is essential for selecting the ratio or extraction solvent to feed that enters an extraction process and for evaluating the mass-transfer rates or theoretical stage efficiencies achieved in process equipment. Since two liquid phases that are immiscible are used, the thermodynamic equilibrium involves considerable evaluation of nonideal solutions. In the simplest case a feed solvent F contains a solute that is to be transferred into an extraction solvent S. [Pg.1450]

Deviations from Raonlt s law in solution behavior have been attributed to many charac teristics such as molecular size and shape, but the strongest deviations appear to be due to hydrogen bonding and electron donor-acceptor interac tions. Robbins [Chem. Eng. Prog., 76(10), 58 (1980)] presented a table of these interactions. Table 15-4, that provides a qualitative guide to solvent selection for hqnid-hqnid extraction, extractive distillation, azeotropic distillation, or even solvent crystallization. The ac tivity coefficient in the liquid phase is common to all these separation processes. [Pg.1452]

Selectivity. The relative separation, or selectivity, Ot of a solvent is the ratio of two components in the extraction-solvent phase divided by the ratio of the same components in the feed-solvent phase. The separation power of a hquid-liquid system is governed by the deviation of Ot from unity, analogous to relative volatility in distillation. A relative separation Ot of 1.0 gives no separation of the components between the two liquid phases. Dilute solute concentrations generally give the highest relative separation factors. [Pg.1453]

In the liquid-hquid extraction area, in the mining industry, coming out of the leach tanks is normally a slurry, in which the desired mineral is dissolved in the liquid phase. To save the expense of separation, usually by filtration or centrifugation, attempts have been made to use a resident pump extraction system in which the organic material is contacted directly with the slurry. The main economic disadvantage to this proposed system is the fact that considerable amounts of organic liquid are entrained in the aqueous slurry system, which, after the extraction is complete, is discarded. In many systems this has caused an economic loss of solvent into this waste stream. [Pg.1640]

For fluorescence PAH determination in tap water acid-induced cloud point extraction was used. This kind of extraction based on the phase separation into two isotropic liquid phases a concentrated phase containing most of the surfactant (surfactant-rich phase), where the solubilised solutes are exttacted, and an aqueous phase containing a surfactant concenttation closes to the critical micellar concentration. [Pg.116]

In recent decades the development of preconcentration steps to be implemented prior to analytical determinations of trace level compounds has been explored in considerable depth. With a view to eliminating or at least minimising the use of organic solvents used in conventional liquid-liquid extraction, other methodologies have been developed, such as membrane extraction, solid-phase extraction, solid-phase microextraction, etc. [Pg.422]

The aqueous micellai solutions of some surfactants exhibit the cloud point, or turbidity, phenomenon when the solution is heated or cooled above or below a certain temperature. Then the phase sepai ation into two isotropic liquid phases occurs a concentrated phase containing most of the surfactant and an aqueous phase containing a surfactant concentration close to the critical micellar concentration. The anionic surfactant solutions show this phenomenon in acid media without any temperature modifications. The aim of the present work is to explore the analytical possibilities of acid-induced cloud point extraction in the extraction and preconcentration of polycyclic ai omatic hydrocai bons (PAHs) from water solutions. The combination of extraction, preconcentration and luminescence detection of PAHs in one step under their trace determination in objects mentioned allows to exclude the use of lai ge volumes of expensive, high-purity and toxic organic solvents and replace the known time and solvent consuming procedures by more simple and convenient methods. [Pg.422]


See other pages where Extraction liquid phase is mentioned: [Pg.588]    [Pg.249]    [Pg.698]    [Pg.273]    [Pg.290]    [Pg.53]    [Pg.588]    [Pg.249]    [Pg.698]    [Pg.273]    [Pg.290]    [Pg.53]    [Pg.212]    [Pg.441]    [Pg.544]    [Pg.446]    [Pg.1287]    [Pg.1313]    [Pg.1319]    [Pg.1448]    [Pg.1470]    [Pg.263]   


SEARCH



Extract phase

Phase extraction

© 2024 chempedia.info