Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Maleic anhydride, cycloaddition

Maleic anhydride cycloaddition to furanothia[ll]annulene (28) led to the formation of the triply annulated parent (29) (see p. 715). [Pg.726]

In the presence of 1-5% of iron trichloride or TBPA under conventional conditions, 60-70% yields of the adduct are formed even at -50 C, in times as short as 15 min.43 Therefore, the conclusion is that, imder appropriate conditions, the anthracene radical cation is most probably on the reaction pathway, in contrast with the case of maleic anhydride cycloaddition. A coincidence seems then to exist between the possibility of a mechanism involving the diene radical cation and the presence of a sonochemical effect. [Pg.103]

The product of a Diels-Alder cycloaddition always contains one more ring than was present m the reactants The dienophile maleic anhydride contains one ring so the product of Its addition to a diene contains two... [Pg.409]

Concerted Nonpolar Reactions. Maleic anhydride exemplifies the model dienophile for cycloaddition with dienes such as 1,3-butadiene... [Pg.450]

The success of the cycloaddition reaction of maleic anhydride varies gready depending on which heterocyclic diene is used. The cycloaddition of maleic anhydride to furan [110-00-9] occurs ia a few seconds under ambient conditions (42,43). Although the endo adduct (14) is favored kiaeticaHy, the exo adduct (13) is isolated. [Pg.450]

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

Metal-Induced Cycloadditions. The effect of coordination on the metal-iaduced cyclo additions of maleic anhydride and the isostmctural heterocycles furan, pyrrole, and thiophene has been investigated (47). Each heterocycle is bound to an Os(II) center in the complex... [Pg.450]

CycIoa.ddltlons. Cyclobutene adducts are formed from the reaction of acetylenic derivatives and maleic anhydride through a 2 + 2 cycloaddition (48). The reaction is photochemicaHy cataly2ed (see Photochemical technology). [Pg.451]

The reactions of pyrroles with dienophiles generally follow two different pathways involving either a [4 + 2] cycloaddition or a Michael-type addition to a free a-position of the pyrrole ring. Pyrrole itself gives a complex mixture of products with maleic anhydride or maleic acid and with benzyne reacts to give 2-phenylpyrrole rather than a product of cycloaddition (Scheme 47). [Pg.65]

In the case of vinylfurans and vinylpyrroles there is the possibility of cycloaddition involving either the cyclic diene system or the diene system including the double bond. 2-Vinylfuran reacts in high yield with maleic anhydride in ether at room temperature to form the adduct involving the exocyclic double bond. Similarly, 2- and 3-vinylpyrroles react with 7T-electron-deficient alkenes and alkynes under relatively mild conditions to give the corresponding tetrahydro- and dihydro-indoles (Scheme 51) (80JOC4515). [Pg.66]

Thiophene fails to undergo cycloaddition reactions with common dienophiles under normal conditions. However, when thiophene is heated under pressure with maleic anhydride, the exo adduct (136) is formed in moderate yield (78JOC1471). [Pg.66]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

The addition of maleic anhydride can occur by excitation of either dienone or the anhydride. It is tempting to ascribe the 4,5-adduct (264) to a reaction between the excited dienone (260) and unexcited maleic anhydride by analogy with the observed major products of ethylene addition [cf. (261), (262)]. The 6,7-adducts (265) and (266) would then imply that these cycloadditions proceed by way of excited maleic anhydride which adds preferentially to the more electron-rich y,5-double bond of the groundstate dienone. [Pg.347]

An example of this methodology was its use in the synthesis of vitamin Be, pyridoxine 12. Cycloaddition of oxazole 9, prepared from ethyl A-acetylalanate and P2O5, with maleic anhydride initially gave 10. Upon exposure to acidic ethanol, the oxabicyclooctane system fragments to afford pyridine 11. Reduction of the ester substituents with LiAlIU generated the desired product 12. [Pg.324]

The Diels-Alder reaction,is a cycloaddition reaction of a conjugated diene with a double or triple bond (the dienophile) it is one of the most important reactions in organic chemistry. For instance an electron-rich diene 1 reacts with an electron-poor dienophile 2 (e.g. an alkene bearing an electron-withdrawing substituent Z) to yield the unsaturated six-membered ring product 3. An illustrative example is the reaction of butadiene 1 with maleic anhydride 4 ... [Pg.89]

We have also used poly(propynoic acid) in our studies of the photochemical interaction of PCSs with dienophiles, such as maleic anhydride, tetracyanoethylene, and styrene. This photochemical reaction of Diels-Alder type is accompanied by the breakdown of the conjugation system and the formation of slightly colored adducts266. Together with the cycloaddition reaction, photodegradation of PPA and its adducts takes place. A cycloaddition reaction is always preceded by the formation of a donor-acceptor complex of a PCS with a dienophile. [Pg.31]

The comparison of rates of cycloaddition of maleic anhydride, tetracyanoethylene, and styrene to PPA shows that the latter, irrespective of the presence of electronegative groups, behaves in these reactions not as an electron-poor diene system. This fact, together with the composition of side products (giving evidence of PPA decarboxylation), allows the assumption to be made that the cycloaddition of dienophiles involves mainly decarboxylated polyene sections of cis-transoid structure213, 266. This is in agreement with the fact that PPA with predominant trans-transoid configuration interacts with these dienophiles at a substantially lower rate. The ultimate amounts of the dienophile combined with PPA of this structure is also considerably smaller. [Pg.31]

The cycloaddition between norbornadiene (23 in Scheme 1.12) and maleic anhydride was the first example of a /mmo-Diels-Alder reaction [55]. Other venerable examples are reported in Scheme 1.12 [56]. Under thermal conditions, the reaction is generally poorly diastereoselective and occurs in low yield, and therefore several research groups have studied the utility of transition metal catalysts [57]. Tautens and coworkers [57c] investigated the cycloaddition of norbornadiene and some of its monosubstituted derivatives with electron-deficient dienophiles in the presence of nickel-cyclo-octadiene Ni(COD)2 and PPhs. Some results are illustrated in Tables 1.4 and 1.5. [Pg.18]

The cycloadditions of the C-2 vinyl glicals with maleic anhydride are an interesting example of facial stereocontrol. The allylic methoxy group in dienes 55a and 55b exerts an nnh -stereodirecting effect as shown by the stereochemistry of the endo-cycloadducts 56 and 57 obtained as the sole products from 55a and 55b, respectively, and by the fact that 55c produces [51] a mixture of the diastereoisomers 56c and 57c (Scheme 2.22). When linear acetylenic dienophiles were used, the degree of facial diastereoselectivity decreased, which indicates its dependence on steric effects. [Pg.49]

Tetraene 141 has been converted into various complex polycondensed adducts by reacting with a variety of dienophiles such as maleic anhydride, N-phenylmaleimide, N-phenyltriazolinedione,p-benzoquinone and tetracyano-ethylene carried out under thermal conditions. All cycloadditions occurred facial-diastereoselectively from an outside attack and provided monocycloadducts which had an exceptionally close relationship between diene and dieno-phile and then underwent intramolecular cycloaddition [125]. The reaction between 141 and p-benzoquinone is illustrated in Scheme 2.53. [Pg.80]

The discovery that Lewis acids can promote Diels-Alder reactions has become a powerful tool in synthetic organic chemistry. Yates and Eaton [4] first reported the remarkable acceleration of the reactions of anthracene with maleic anhydride, 1,4-benzoquinone and dimethyl fumarate catalyzed by aluminum chloride. The presence of the Lewis-acid catalyst allows the cycloadditions to be carried out under mild conditions, reactions with low reactive dienes and dienophiles are made possible, and the stereoselectivity, regioselectivity and site selectivity of the cycloaddition reaction can be modified [5]. Consequently, increasing attention has been given to these catalysts in order to develop new regio- and stereoselective synthetic routes based on the Diels-Alder reaction. [Pg.99]

The investigation on the use of K-10 montmorillonite under free solvent conditions was then extended to inner ring dienes such as furan and its 2,5-dimethyl derivative [9] (Table 4.3). The cycloadditions generally proceed slowly, and Zn(II)-doped clay and microwave irradiation were used to accelerate the reactions. The reaction with maleic anhydride preferentially affords the thermodynamically favored exo adduct. [Pg.145]

Luche and coworkers [34] investigated the mechanistic aspects of Diels-Alder reactions of anthracene with either 1,4-benzoquinone or maleic anhydride. The cycloaddition of anthracene with maleic anhydride in DCM is slow under US irradiation in the presence or absence of 5% tris (p-bromophenyl) aminium hexachloroantimonate (the classical Bauld monoelectronic oxidant, TBPA), whereas the Diels Alder reaction of 1,4-benzoquinone with anthracene in DCM under US irradiation at 80 °C is slow in the absence of 5 % TBPA but proceeds very quickly and with high yield at 25 °C in the presence of TBPA. This last cycloaddition is also strongly accelerated when carried out under stirring solely at 0°C with 1% FeCh. The US-promoted Diels Alder reaction in the presence of TBPA has been justified by hypothesizing a mechanism via radical-cation of diene, which is operative if the electronic affinity of dienophile is not too weak. [Pg.157]

The mechanism of cycloaddition reaction of maleic anhydride with anthracene promoted by US irradiation has been the subject of many controversies [32, 37]. Recent work of Da Cunha and Garrigues [35] shows that the reaction proceeds in toluene solution in the 60 85 °C temperature range in 6 3 h. [Pg.157]

The single-electron transfer from one excited component to the other component acceptor, as the critical step prior to cycloaddition of photo-induced Diels Alder reactions, has been demonstrated [43] for the reaction of anthracene with maleic anhydride and various maleimides carried out in chloroform under irradiation by a medium-pressure mercury lamp (500 W). The (singlet) excited anthracene ( AN ), generated by the actinic light, is quenched by dienophile... [Pg.163]

The study of high pressure cycloaddition reactions of tropone (125) with maleic anhydride and norbornene allowed the reaction activation volumes to be measured and showed that they are large, negative and solvent-dependent (Scheme 5.17) [43a]. [Pg.226]

The more reactive furan (139a) undergoes thermal Diels-Alder reaction [52] with reactive dienophiles such as maleic anhydride and maleimide (Scheme 5.21). Whereas the cycloaddition with the maleic anhydride afforded the exoadduct at room temperature, the stereochemistry of the reaction of maleimide depends on the reaction temperature. [Pg.230]

The cycloaddition between furan and maleic anhydride was the first uncatalyzed aqueous Diels-Alder reaction reported in the literature and was studied by Diels and Alder themselves [11]. This cycloaddition was successfully revised by Woodward and Baer [12] and some years later by De Koning and coworkers [13]. The aqueous medium was also used in the cycloaddition of aromatic diazonium salts with methylsubstituted 1,3-butadienes [14]. [Pg.252]


See other pages where Maleic anhydride, cycloaddition is mentioned: [Pg.27]    [Pg.27]    [Pg.333]    [Pg.70]    [Pg.64]    [Pg.64]    [Pg.891]    [Pg.344]    [Pg.271]    [Pg.155]    [Pg.224]    [Pg.801]    [Pg.81]    [Pg.117]    [Pg.160]    [Pg.132]    [Pg.120]    [Pg.195]    [Pg.216]    [Pg.801]   


SEARCH



Anhydrides maleic anhydride

Maleic anhydride

© 2024 chempedia.info