Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid membrane development

In describing membrane development, both types of liquid membranes should be distinguished, i.e. the supported liquid membrane (SLM) and the emulsion liquid membrane (ELM). [Pg.352]

Supponed liquid membranes consist of three main components  [Pg.352]

Because a free liquid film is not very stable, the function of the porous support membrwe is to act as a hramework. However, even in the presence of such a framework the liquid membrane will not remain stable for any length of time. This is one of the main problems with this process as will be discussed towards the end of this section. In fact, all types of membrane materials can be used as the support membrane provided they are stable under the experimental conditions employed and have suitable chemical properties. Indeed, [Pg.353]


An important advance in ion-selective electrodes (ISEs) and related systems was based on the concept of polymeric liquid membranes developed by Eisenman [122]. The principle of this approach was to incorporate an organic compound as the ionophore into a polyvinyl chloride membrane... [Pg.585]

Ceramic, Metal, and Liquid Membranes. The discussion so far implies that membrane materials are organic polymers and, in fact, the vast majority of membranes used commercially are polymer based. However, interest in membranes formed from less conventional materials has increased. Ceramic membranes, a special class of microporous membranes, are being used in ultrafHtration and microfiltration appHcations, for which solvent resistance and thermal stabHity are required. Dense metal membranes, particularly palladium membranes, are being considered for the separation of hydrogen from gas mixtures, and supported or emulsified Hquid films are being developed for coupled and facHitated transport processes. [Pg.61]

Liquid Membranes. A number of reviews summarize the considerable research effort ia the 1970s and 1980s on Hquid membranes containing carriers to faciUtate selective transport of gases or ions (58,59). Although stiU being explored ia a number of laboratories, the mote recent development of much mote selective conventional polymer membranes has diminished interest ia processes using Hquid membranes. [Pg.70]

Most of the chiral membrane-assisted applications can be considered as a modality of liquid-liquid extraction, and will be discussed in the next section. However, it is worth mentioning here a device developed by Keurentjes et al., in which two miscible chiral liquids with opposing enantiomers of the chiral selector flow counter-currently through a column, separated by a nonmiscible liquid membrane [179]. In this case the selector molecules are located out of the liquid membrane and both enantiomers are needed. The system allows recovery of the two enantiomers of the racemic mixture to be separated. Thus, using dihexyltartrate and poly(lactic acid), the authors described the resolution of different drugs, such as norephedrine, salbu-tamol, terbutaline, ibuprofen or propranolol. [Pg.15]

Possible applications of MIP membranes are in the field of sensor systems and separation technology. With respect to MIP membrane-based sensors, selective ligand binding to the membrane or selective permeation through the membrane can be used for the generation of a specific signal. Practical chiral separation by MIP membranes still faces reproducibility problems in the preparation methods, as well as mass transfer limitations inside the membrane. To overcome mass transfer limitations, MIP nanoparticles embedded in liquid membranes could be an alternative approach to develop chiral membrane separation by molecular imprinting [44]. [Pg.136]

As described above, the application of classical liquid- liquid extractions often results in extreme flow ratios. To avoid this, a completely symmetrical system has been developed at Akzo Nobel in the early 1990s [64, 65]. In this system, a supported liquid-membrane separates two miscible chiral liquids containing opposite chiral selectors (Fig. 5-13). When the two liquids flow countercurrently, any desired degree of separation can be achieved. As a result of the system being symmetrical, the racemic mixture to be separated must be added in the middle. Due to the fact that enantioselectivity usually is more pronounced in a nonaqueous environment, organic liquids are used as the chiral liquids and the membrane liquid is aqueous. In this case the chiral selector molecules are lipophilic in order to avoid transport across the liquid membrane. [Pg.141]

In this review, recent development of active transport of ions accross the liquid membranes using the synthetic ionophores such as crown ethers and other acyclic ligands, which selectively complex with cations based on the ion-dipole interaction, was surveyed,... [Pg.58]

An survey of recent developments in membrane processes, involving reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), electrodialysis (ED), dialysis (D), pervaporation (Pr), gas permeation (GP), and emulsion liquid membrane (ELM), has been provided by Sirkar (1997). [Pg.431]

The CLM method is a new technique, developed by Nagatani and Watarai [61]. This method produces a stable, ultrathin two-phase liquid membrane by the centrifugal force due to the rotation of a cylindrical cell, using the arrangement shown in Fig. 11. The inner diameter and inner height of the cylindrical cell were 19 and 29 mm, respectively. The rotation speed was controlled in the range 6000-7500 rpm. The summation of the absorption spectra of both interfacial and bulk organic phase species was measured in the direction perpendicular to the rotation axis with a diode array spectrophotometer. [Pg.344]

From the beginning of the 1980s, some effective experimental approaches based on new principles have been invented for the study of interfacial reactions in solvent extraction chemistry. Recently, some methods were developed from our laboratory, the highspeed stirring (HSS) method [4,5], the two-phase stopped flow method [6], the capillary plate method [7], the reflection spectrometry [8], and the centrifugal liquid membrane (CLM) method [9]. [Pg.361]

Liquid membrane type ion-seleetive electrodes (ISEs) provide one of the most versatile sensing methods because it is possible to customize the sensory elements to suit the structure of the analyte. A wealth of different synthetic and natural ionophores has been developed, in the past 30 years, for use in liquid membrane type ISEs for various inorganic and organic ions [1], In extensive studies [2-4], the response mechanism of these ISEs has been interpreted in terms of thermodynamics and kinetics. However, there have been few achievements in the characterization of the processes occurring at the surface of ISEs at molecular level. [Pg.442]

In the past decade, several novel solvent-based microextraction techniques have been developed and applied to environmental and biological analysis. Notable approaches are single-drop microextraction,147 small volume extraction in levitated drops,148 flow injection extraction,149 150 and microporous membrane- or supported liquid membrane-based two- or three-phase microextraction.125 151-153 The two- and three-phase microextraction techniques utilizing supported liquid membranes deposited in the pores of hollow fiber membranes are the most explored for analytes of wide ranging polarities in biomatrices. This discussion will be limited to these protocols. [Pg.35]

The concept of the pH electrode has been extended to include other ions as well. Considerable research has gone into the development of these ion-selective electrodes over the years, especially in studying the composition of the membrane that separates the internal solution from the analyte solution. The internal solution must contain a constant concentration of the analyte ion, as with the pH electrode. Today we utilize electrodes with 1) glass membranes of varying compositions, 2) crystalline membranes, 3) liquid membranes, and 4) gas-permeable membranes. In each case, the interior of the electrode has a silver-silver chloride wire immersed in a solution of the analyte ion. [Pg.403]

In the recent years, many researchers have devoted attention to the development of membrane science and technology. Different important types of membranes, such as these for nanofiltration, ultrafiltration, microfiltration, separation of gases and inorganic membranes, facilitated or liquid membranes, catalytic and conducting membranes, and their applications and processes, such as wastewater purification and bio-processing have been developed [303], In fact, almost 40 % of the sales from membrane production market are for purifying wastewaters. [Pg.173]

Liquid membrane processes for removing H2S from process gases are potentially attractive because they may require less energy than conventional techniques. Research is now going on to develop these technologies, but they have not yet achieved commercial application. [Pg.22]

The development of liquid-membrane extraction has been mainly in the fields of hydrometallurgy and waste-water treatment. There are also potential advantages for their use in biotechnology, such as extraction from fermentation broths, and biomedical engineering, such as blood oxygenation. [Pg.472]

Although the problem of the liquid membrane potential was solved in principle by Nemst, a discussion developed in the ensuing two decades between Bauer [6], who developed the adsorption theory of membrane potentials, and Beutner [10,11,12], who based his theories on Nernst s work. This problem was finaly solved by Bonhoeffer, Kahlweit and Strehlow [13], and by Karpfen and Randles [49]. The latter authors also introduced the concept of the distribution potential. [Pg.8]


See other pages where Liquid membrane development is mentioned: [Pg.9]    [Pg.352]    [Pg.9]    [Pg.352]    [Pg.1941]    [Pg.471]    [Pg.1470]    [Pg.318]    [Pg.147]    [Pg.148]    [Pg.225]    [Pg.233]    [Pg.554]    [Pg.152]    [Pg.156]    [Pg.31]    [Pg.358]    [Pg.697]    [Pg.531]    [Pg.83]    [Pg.159]    [Pg.160]    [Pg.128]    [Pg.716]    [Pg.140]    [Pg.186]    [Pg.36]    [Pg.2]    [Pg.216]    [Pg.335]    [Pg.45]    [Pg.63]   


SEARCH



Liquid development

Membranes development

© 2024 chempedia.info