Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limit, short term change

Investigations with more limited goals designed to measure intermediate or short-term changes in biochemical and molecular markers may lessen some of these difficulties. Biological markers that can detect early and subtle differences in individual response would be necessary for this purpose. The most suitable are markers that can be detected in small samples of tissue or body fluids that are accessible to sampling they should be expressed differentially in accordance with differences observed in normal and abnormal responders and they should have a low probability of spontaneous change. [Pg.6]

It is of paramount importance to rule out vitamin B12 deficiency when folate deficiency is detected, as symptoms are similar. Laboratory changes associated with folate deficiency are similar to those seen in vitamin Bn deficiency, except vitamin Bn levels are normal. Decreases occur in the serum folate level (<3 ng/mL) within a few days of dietary folate limitations. The RBC folate level (<150 ng/mL) also declines and may be a better indicator of deficiency, as levels remain constant throughout the life span of the erythrocyte. Serum folate levels are sensitive to short-term changes such as dietary restrictions or alcohol intake, which may result in a short-term decline in serum levels with adequate tissue stores. It should be noted that an estimated 60% of patients with pernicious anemia have falsely low RBC folate levels, in all probability due to the requirement of cobal-amin for the normal transfer of methyltetrahydrofolate from plasma to cells. Additionally, if serum or erythrocyte folate levels are borderline, serum homocysteine is usually increased with a folic acid deficiency. If serum MMA levels are also elevated, vitamin B12 deficiency needs to be ruled out. [Pg.1821]

Acute, short-term changes in interstitial function secondary to pulmonary edema, or long-term changes secondary to interstitial inflammation or fibrosis subsequently limit diffusing capacity, a particularly exercise-sensitive portion of the gas exchange system. [Pg.255]

Another way to evaluate risks is to calculate the sensitivity of the total risk estimates to changes in assumptions, frequencies, or consequences. Risk analysts tend to be conservative in their assumptions and calculations, and the cumulative effect of this conservatism may be a substantial overestimation of risk. For example, always assuming that short-term exposure to chemical concentrations above some threshold limit value will cause serious injury may severely skew the calculated risks of health effects. If you do not understand the sensitivity of the risk results to this conservative assumption, you may misallocate your loss prevention resources or misinform your company or the public about the actual risk. [Pg.45]

Ek osystem recovery from environmental extremes The examples which illustrated the responses of agricultural ecosystems to extreme events have been limited to short-term effects on productivity. For natural ecosystems which can not be replanted the recovery response to an environmental extreme is crucial, not only in the time taken for recovery but also in terms of the manner in which the ecosystem may change during and after the period of recovery. In this context, change is particularly concerned with the species which constitute an ecosystem, a consideration which is central to the aims of conservation. [Pg.21]

In addition, two mechanisms operative at the level of the nerve terminal play important roles in the short-term modulation of catecholamine synthesis and are responsive to momentary changes in neuronal activity [12]. TH, the rate-limiting enzyme in the synthesis pathway, is... [Pg.214]

Short-term exposure limit. The maximum concentration to which workers can be exposed for a period of up to 15 minutes continuously without suffering (1) intolerable irritation, (2) chronic or irreversible tissue change, (3) narcosis of sufficient degree to increase accident proneness, impair self-rescue, or materially reduce worker efficiency, provided that no more than 4 excursions per day are permitted, with at least 60 minutes between exposure periods, and provided that the daily TLV-TWA is not exceeded. [Pg.55]

A short-term study of guinea pigs exposed to zinc oxide fume 3 hours/day for 6 days at the threshold limit value (TLV) of 5mg/m revealed pulmonary function changes and morphologic evidence of small airway inflammation and edema. Pulmonary flow resistance increased, compliance decreased, and lung volumes and carbon monoxide diffusing capacity decreased. Some of these changes persisted for the 72-hour duration of postexposure follow-up. [Pg.751]

The ideal (bio)chemical sensor should operate reversibly and respond like a physical sensor (e.g. a thermometer), i.e. it should be responsive to both high and low analyte concentrations and provide a nil response in its absence. One typical example is the pH electrode. In short, a reversible (bio)chemical sensor provides a response consistent with the actual variation in the analyte concentration in the sample and is not limited by any change or disruption in practical terms, responsiveness is inherent in reversibility. An irreversible-non-regenerable (bio)chemical sensor only responds to increases in the analyte concentration and can readily become saturated only those (bio)chemical sensors of this type intended for a single service (disposable or single-use sensors) are of practical interest. On the other hand, an irreversible-reusable sensor produces a response similar to that from an irreversible sensor but does not work in a continuous fashion as it requires two steps (measurement and renewal) to be rendered reusable. Figures 1.12 and 1.13 show the typical responses provided by this type of sensor. Note... [Pg.30]

The electroreduction of some typically inorganic compoimds such as nitrogen oxides is catalysed by the presence of polymeric osmium complexes such as [Os(bipy)2(PVP)2oCl]Cl, where bipy denotes 2,2 -bipyridyl and PVP poly(4-vinylpyridine). This polymer modifies the reduction kinetics of nitrite relative to the reaction at a bare carbon electrode, and provides calibration graphs of slope 0.197 nA with detection limits of 0.1 pg/mL and excellent short-term reproducibility (RSD = 2.15% for n = 20). The sensor performance was found to scarcely change after 3 weeks of use in a flow system into which 240 standards and 30 meat extracts were injected [195]. [Pg.151]

In SNF corrosion tests, there has been a tendency to use the release of more soluble species Tc, Cs, and Mo as markers for fuel corrosion (Finn et al. 2002). As none of these elements are present in the U02 matrix, this approach may not reveal the actual fuel matrix corrosion rate. Furthermore, short-term leaching tests may not expose possible diffusion-limited (tl/2) release of gap and grain boundary species and assume excessive rates of reaction based on initial fast release rates. The microstructure, radiation field, and composition will change over time, so that tests carried out on fuel today may not be relevant to fuel behaviour 300 to 1000 years from now, once the high p-,y-field has decayed. [Pg.72]

Thus primary cells (i.e., obtained freshly from a human or animal organ) may show poor viability in medium- to long-term experiments, and this can limit their usefulness to short-term exposures. There are also major biochemical changes, which occur with time in primary cells,... [Pg.13]


See other pages where Limit, short term change is mentioned: [Pg.13]    [Pg.259]    [Pg.224]    [Pg.176]    [Pg.154]    [Pg.251]    [Pg.432]    [Pg.79]    [Pg.174]    [Pg.209]    [Pg.356]    [Pg.399]    [Pg.41]    [Pg.55]    [Pg.7]    [Pg.503]    [Pg.73]    [Pg.805]    [Pg.469]    [Pg.344]    [Pg.145]    [Pg.559]    [Pg.65]    [Pg.159]    [Pg.309]    [Pg.131]    [Pg.29]    [Pg.142]    [Pg.175]    [Pg.432]    [Pg.5]    [Pg.154]    [Pg.91]    [Pg.34]    [Pg.265]    [Pg.198]    [Pg.124]    [Pg.272]   


SEARCH



Limit, short term

Short-term

© 2024 chempedia.info