Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis acids substitution

The most widely used reactions are those of electrophilic substitution, and under controlled conditions a maximum of three substituting groups, e.g. -NO2 (in the 1,3,5 positions) can be introduced by a nitric acid/sul-phuric acid mixture. Hot cone, sulphuric acid gives sulphonalion whilst halogens and a Lewis acid catalyst allow, e.g., chlorination or brom-ination. Other methods are required for introducing fluorine and iodine atoms. Benzene undergoes the Friedel-Crafts reaction. ... [Pg.55]

In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

The merits of (enantioselective) Lewis-acid catalysis of Diels-Alder reactions in aqueous solution have been highlighted in Chapters 2 and 3. Both chapters focused on the Diels-Alder reaction of substituted 3-phenyl-1-(2-pyr idyl)-2-prop ene-1-one dienophiles. In this chapter the scope of Lewis-acid catalysis of Diels-Alder reactions in water is investigated. Some literature claims in this area are critically examined and requirements for ejfective Lewis-acid catalysis are formulated. Finally an attempt is made to extend the scope of Lewis-acid catalysis in water by making use of a strongly coordinating auxiliary. [Pg.107]

Chapter 2 describes the results of the first detailed study of Lewis-acid catalysis of a Diels-Alder reaction in water. Substituted 3-phenyl-l-(2-pyridyl)-2-propen-l-one dienophiles (la-gin Scheme 1) were found to coordinate to Co, Cu" and Zn ions in aqueous solution. This process forms... [Pg.173]

These studies at the same time aroused my interest in the mechanistic aspects of the reaetions, including the complexes of RCOF and RF with BF3 (and eventually with other Lewis acid fluorides) as well as the complexes they formed with aromatics. 1 isolated for the first time at low temperatures arenium tetrafluoroborates (the elusive (T-complexes of aromatic substitutions), although I had no means to pursue their structural study. Thus my long fascination with the chemistry of car-bocationic complexes began. [Pg.58]

In an intramolecular aldol condensation of a diketone many products are conceivable, since four different ends can be made. Five- and six-membered rings, however, wUl be formed preferentially. Kinetic or thermodynamic control or different acid-base catalysts may also induce selectivity. In the Lewis acid-catalyzed aldol condensation given below, the more substituted enol is formed preferentially (E.J. Corey, 1963 B, 1965B). [Pg.93]

Another category Ic indole synthesis involves cyclization of a-anilino aldehydes or ketones under the influence of protonic or Lewis acids. This corresponds to retro.synthetic path d in Scheme 4.1. Considerable work on such reactions was done in the early 1960s by Julia and co-workers. The most successful examples involved alkylation of anilines with y-haloacetoacetic esters or amides. For example, heating IV-substituted anilines with ethyl 4-bromoacetoacetate followed by cyclization w ith ZnClj gave indole-3-acetate esterfi]. Additional examples are given in Table 4.3. [Pg.41]

Boron trichloride, usually in conjunction with an additional Lewis acid, effects o-chloroacetylation of anilines. The resulting products are converted to indoles by reduction with NaBH4.[l], The strength of the Lewis acid required depends upon the substitution pattern on the ring. With ER substituents no additional... [Pg.75]

The Lewis acid Lewis base idea also includes certain substitution reactions m which one atom or group replaces another... [Pg.46]

As improvements over P-methylumbeUiferone (55—57), 4-methyl-7-amino-coumarin [26093-31-2] (12a) and 7-dimethylamino-4-methylcoumarin [87-014] (12b) (58—61) were proposed. These compounds are used for brightening wool and nylon either in soap powders or detergents, or as salts under acid dyeing conditions. They are obtained by the Pechmaim synthesis from appropriately substituted phenols and P-ketocarboxyflc acid esters or nitriles in the presence of Lewis acid catalysts (see Coumarin). [Pg.117]

With the improvement of refining and purification techniques, many pure olefinic monomers are available for polymerization. Under Lewis acid polymerization, such as with boron trifluoride, very light colored resins are routinely produced. These resins are based on monomers such as styrene, a-methylstryene, and vinyltoluene (mixed meta- and i ra-methylstyrene). More recently, purified i ra-methylstyrene has become commercially available and is used in resin synthesis. Low molecular weight thermoplastic resins produced from pure styrene have been available since the mid-1940s resins obtained from substituted styrenes are more recent. [Pg.350]

Nucleophilic Ring Opening. Opening of the ethyleneimine ring with acid catalysis can generally be accompHshed by the formation of an iatermediate ayiridinium salt, with subsequent nucleophilic substitution on the carbon atom which loses the amino group. In the foUowiag, R represents a Lewis acid, usually A = the nucleophile. [Pg.3]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

The Lewis acid-catalyzed cyclization of 3-anaino-2-alkerLirnines (21) leads to a wide variety of alkyl- and aryl-substituted quinolines (59). The high regiospecificity and the excellent yields obtained make this process promising. [Pg.392]

The problems associated with predicting regioselectivity in quinone Diels-Alder chemistry have been studied, and a mechanistic model based on frontier molecular orbital theory proposed (85). In certain cases of poor regioselectivity, eg, 2-methoxy-5-methyl-l,4-ben2oquinone with alkyl-substituted dienes, the use of Lewis acid catalysts is effective (86). [Pg.414]

Alkylation involving formaldehyde in the presence of hydrogen chloride is known as chloromethylation (eq. 3). The reagent may be a mixture of formalin and hydrochloric acid, paraformaldehyde and hydrochloric acid, a chloromethyl ether, or a formal. Zinc chloride is commonly employed as a catalyst, although many other Lewis acids can be used. Chloromethylation of sahcyhc acids yields primarily the 5-substituted product 5-chlotomethylsahcyhc acid [10192-87-7] (4). [Pg.285]

BenZotrichloride Method. The central carbon atom of the dye is supphed by the trichloromethyl group from iJ-chlorobenzotrichloride. Both symmetrical and unsymmetrical triphenyhnethane dyes suitable for acryhc fibers are prepared by this method. 4-Chlorobenzotrichloride is condensed with excess chlorobenzene in the presence of a Lewis acid such as aluminium chloride to produce the intermediate aluminium chloride complex of 4,4, 4"-trichlorotriphenylmethyl chloride (18). Stepwise nucleophihc substitution of the chlorine atoms of this intermediate is achieved by successive reactions with different arylamines to give both symmetrical (51) and unsymmetrical dyes (52), eg, N-(2-chlorophenyl)-4-[(4-chlorophenyl) [4-[(3-methylphenyl)imino]-2,5-cyclohexadien-l-yhdene]methyl]benzenaminemonohydrochloride [85356-86-1J (19) from. w-toluidine and o-chloroaniline. [Pg.273]

Addition Chlorination. Chlorination of olefins such as ethylene, by the addition of chlorine, is a commercially important process and can be carried out either as a catalytic vapor- or Hquid-phase process (16). The reaction is influenced by light, the walls of the reactor vessel, and inhibitors such as oxygen, and proceeds by a radical-chain mechanism. Ionic addition mechanisms can be maximized and accelerated by the use of a Lewis acid such as ferric chloride, aluminum chloride, antimony pentachloride, or cupric chloride. A typical commercial process for the preparation of 1,2-dichloroethane is the chlorination of ethylene at 40—50°C in the presence of ferric chloride (17). The introduction of 5% air to the chlorine feed prevents unwanted substitution chlorination of the 1,2-dichloroethane to generate by-product l,l,2-trichloroethane. The addition of chlorine to tetrachloroethylene using photochemical conditions has been investigated (18). This chlorination, which is strongly inhibited by oxygen, probably proceeds by a radical-chain mechanism as shown in equations 9—13. [Pg.508]

Aromatic compounds may be chlorinated with chlorine in the presence of a catalyst such as iron, ferric chloride, or other Lewis acids. The halogenation reaction involves electrophilic displacement of the aromatic hydrogen by halogen. Introduction of a second chlorine atom into the monochloro aromatic stmcture leads to ortho and para substitution. The presence of a Lewis acid favors polarization of the chlorine molecule, thereby increasing its electrophilic character. Because the polarization does not lead to complete ionization, the reaction should be represented as shown in equation 26. [Pg.510]

Methoxy-2-trimethylsilyloxyfuran is also a highly efficient diene under the influence of Lewis acids this compound is substituted readily at position 5 with a wide variety of agents (Scheme 74) (82TL353). [Pg.77]

A wide range of caibocation stability data has been obtained by measuring the heat of ionization of a series of chlorides and cafbinols in nonnucleophilic solvents in the presence of Lewis acids. Some representative data are given in Table 5.4 These data include the diarylmediyl and triarylmethyl systems for which pX R+ data are available (Table 5.1) and give some basis for comparison of the stabilities of secondary and tertiary alkyl carbocations with those of the more stable aryl-substituted ions. [Pg.281]

These mechanisms ascribe in jortance to the Lewis acid-Lewis base interaction between the allyl halide and the organolithium reagent. When substitution is complete, the halide ion is incorporated into the lifliium cluster in place of one of the carbon ligands. [Pg.435]

There has been little study of the stereoselectivity of the reaction under acidic conditions. In the absence of a coordinating Lewis acid, there is no preference for a cyclic transition state. When regioisomeric enols are possible, acid-catalyzed reactions tend to proceed through the more substituted of the enols. This reflects the predominance of this enol. (See Section 7.2.)... [Pg.469]


See other pages where Lewis acids substitution is mentioned: [Pg.18]    [Pg.106]    [Pg.18]    [Pg.106]    [Pg.182]    [Pg.199]    [Pg.75]    [Pg.192]    [Pg.203]    [Pg.14]    [Pg.70]    [Pg.105]    [Pg.507]    [Pg.551]    [Pg.558]    [Pg.3]    [Pg.380]    [Pg.369]    [Pg.44]    [Pg.158]    [Pg.116]    [Pg.251]    [Pg.252]    [Pg.266]    [Pg.292]    [Pg.481]    [Pg.58]    [Pg.148]    [Pg.599]   


SEARCH



Aromatic Substitution by Electrophiles (Lewis Acids, E 2 Electrophilic Substitutions in Syntheses of Benzene erivatives

Electrophilic substitution, aromatic Lewis acids

Lewis Acid-Mediated Electrophilic Substitutions

Lewis acid catalysis of electrophilic substitution reaction

Nucleophilic Substitutions Using Lewis Acidic Fe Catalysts

Nucleophilic substitution Lewis acid-mediated

© 2024 chempedia.info