Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser in mass spectrometry

Modern commercial lasers can produce intense beams of monochromatic, coherent radiation. The whole of the UV/visible/IR spectral range is accessible by suitable choice of laser. In mass spectrometry, this light can be used to cause ablation, direct ionization, and indirect ionization (MALDI). Ablation (often together with a secondary ionization mode) and MALDI are particularly important for examining complex, intractable solids and large polar biomolecules, respectively. [Pg.136]

Lubman, D.H. (ed.) (1990) Lasers in Mass Spectrometry, Oxford University Press, Oxford. [Pg.474]

The current status of laser desorption has recently been reviewed [98], including LDMS [197], LD-FIMS [188,198,199] andLDMS/MS [200]. Van Vaeck et al. [191] have reviewed lasers in mass spectrometry, with emphasis on instrumentation. [Pg.360]

In Laser Ionization Mass Spectrometry (LIMS, also LAMMA, LAMMS, and LIMA), a vacuum-compatible solid sample is irradiated with short pulses ("10 ns) of ultraviolet laser light. The laser pulse vaporizes a microvolume of material, and a fraction of the vaporized species are ionized and accelerated into a time-of-flight mass spectrometer which measures the signal intensity of the mass-separated ions. The instrument acquires a complete mass spectrum, typically covering the range 0— 250 atomic mass units (amu), with each laser pulse. A survey analysis of the material is performed in this way. The relative intensities of the signals can be converted to concentrations with the use of appropriate standards, and quantitative or semi-quantitative analyses are possible with the use of such standards. [Pg.44]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

R. W. Odom and B. Schueler. Laser Microprobe Mass Spectrometry Ion and Neutral Analysis, in Lasers and Mass Spectrometry (D. M. Lubman, ed.) Oxford University Press, Oxford, 1990. Presents a useful discussion of LIMS instrumental issues, including the post-ablation ionization technique. Several anal)n ical applications are presented. [Pg.597]

L. Van Vaeck and R. Gijbels. in Microbeam Analysis-1989 (P. E. Russell, ed.) San Francisco Press, San Francisco, xvii, 1989. A synopsis of laser-based mass spectrometry anal)n ical techniques. [Pg.597]

Matrix-assisted laser desorption mass spectrometry (MALDI-MS) is, after electrospray ionization (ESI), the second most commonly used method for ionization of biomolecules in mass spectrometry. Samples are mixed with a UV-absorbing matrix substance and are air-dried on a metal target. Ionization and desorption of intact molecular ions are performed using a UV laser pulse. [Pg.748]

Enhanced molecular ion implies reduced matrix interference. An SMB-El mass spectrum usually provides information comparable to field ionisation, but fragmentation can be promoted through increase of the electron energy. For many compounds the sensitivity of HSI can be up to 100 times that of El. Aromatics are ionised with a much greater efficiency than saturated compounds. Supersonic molecular beams are used in mass spectrometry in conjunction with GC-MS [44], LC-MS [45] and laser-induced multiphoton ionisation followed by time-of-flight analysis [46]. [Pg.361]

Automated organic and elemental ion mapping of TLC plates by LMMS techniques, without focus correction, has been reported [802,839]. One of the early TLC-MS scanners used laser desorption combined with Cl detection [807,808]. The use of laser desorption mass spectrometry (LDMS), in connection with TLC separations, allows sampling of a very small area of a spot (ca. 5 im). In this way spot homogeneity can be determined (e.g. in the case of overlapping components), and also leaves the bulk of the material unaffected for further study. An important advantage... [Pg.541]

The technique is referred to by several acronyms including LAMMA (Laser Microprobe Mass Analysis), LIMA (Laser Ionisation Mass Analysis), and LIMS (Laser Ionisation Mass Spectrometry). It provides a sensitive elemental and/or molecular detection capability which can be used for materials such as semiconductor devices, integrated optical components, alloys, ceramic composites as well as biological materials. The unique microanalytical capabilities that the technique provides in comparison with SIMS, AES and EPMA are that it provides a rapid, sensitive, elemental survey microanalysis, that it is able to analyse electrically insulating materials and that it has the potential for providing molecular or chemical bonding information from the analytical volume. [Pg.59]

Spengler, B. Kirsch, D. Kaufmann, R. Metastable decay of peptides and proteins in matrix-assisted laser-desorption mass spectrometry. Rapid Comm. Mass Spectrom. 1991, 5,198-202. [Pg.199]

Figure 2.9. Schematic of a matrix-assisted laser desorption/ionization (MALDI) event. The SEM micrograph depicts sinapinic acid-equine myoglobin crystal from a sample prepared according to the dried drop sample preparation method. In the desorption event neutral matrix molecules (M), positive matrix ions (M+), negative matrix ions (M-), neutral analyte molecules (N), positive analyte ions (+), and negative analyte ions (-) are created and/or transferred to the gas phase. Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With permission of John Wiley Sons, Inc. Figure 2.9. Schematic of a matrix-assisted laser desorption/ionization (MALDI) event. The SEM micrograph depicts sinapinic acid-equine myoglobin crystal from a sample prepared according to the dried drop sample preparation method. In the desorption event neutral matrix molecules (M), positive matrix ions (M+), negative matrix ions (M-), neutral analyte molecules (N), positive analyte ions (+), and negative analyte ions (-) are created and/or transferred to the gas phase. Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With permission of John Wiley Sons, Inc.
Figure 15.1. MALDI spectrum of a polycarbonate sample along with peak assignment. In the inset, an expansion of the spectral region from 3.0 up to 3.7 kDa is shown. (Reproduced from Puglisi, C. et al., 1999. Analysis of Poly(bisphenol A Carbonate) by Size Exclusion Chromatography/Matrix-Assisted Laser Desorption/lonization. I. End Group and Molar Mass Determination. Rapid Communications in Mass Spectrometry, 13 2260-2267. With permission of John Wiley Sons, Inc.)... Figure 15.1. MALDI spectrum of a polycarbonate sample along with peak assignment. In the inset, an expansion of the spectral region from 3.0 up to 3.7 kDa is shown. (Reproduced from Puglisi, C. et al., 1999. Analysis of Poly(bisphenol A Carbonate) by Size Exclusion Chromatography/Matrix-Assisted Laser Desorption/lonization. I. End Group and Molar Mass Determination. Rapid Communications in Mass Spectrometry, 13 2260-2267. With permission of John Wiley Sons, Inc.)...
The development of soft ionization methods (electrospray ionization and matrix-assisted laser desorption ionization, and others not discussed here) has contributed to the remarkable progress seen in mass spectrometry applied to biochemistry and molecular biology research progress, and is beginning to find applications in archaeology. [Pg.169]


See other pages where Laser in mass spectrometry is mentioned: [Pg.134]    [Pg.46]    [Pg.370]    [Pg.46]    [Pg.134]    [Pg.67]    [Pg.105]    [Pg.355]    [Pg.134]    [Pg.46]    [Pg.370]    [Pg.46]    [Pg.134]    [Pg.67]    [Pg.105]    [Pg.355]    [Pg.1330]    [Pg.134]    [Pg.529]    [Pg.33]    [Pg.109]    [Pg.223]    [Pg.538]    [Pg.584]    [Pg.648]    [Pg.47]    [Pg.177]    [Pg.177]    [Pg.178]    [Pg.66]    [Pg.43]    [Pg.79]    [Pg.214]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Laser mass spectrometry

Laser spectrometry

Matrix-assisted laser desorption/ionization in imaging mass spectrometry

© 2024 chempedia.info