Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Beam intensity

A comparison between the beam intensity before and after the flame provides a measurement of the quantity of photons absorbed and therefore the concentration of the atom being analyzed. The comparison can be made directly by a double beam analyzer. See Figure 2.7 in which the beam is divided into 2 branches one of which traverses the flame, the other serving as... [Pg.35]

Figure A3.9.4. The ratio of specular reflectivity to incident beam intensity ratio for D2 molecules scattering from a Cii(lOO) surface at 30 K [21],... Figure A3.9.4. The ratio of specular reflectivity to incident beam intensity ratio for D2 molecules scattering from a Cii(lOO) surface at 30 K [21],...
The intensity of SS /. from an element in the solid angle AD is proportional to the initial beam intensity 7q, the concentration of the scattering element N., the neutralization probability P-, the differential scattering cross section da(0)/dD, the shadowing coefficient. (a, 5j ) and the blocking coefficient(a,5 ) for the th component on the surface ... [Pg.1803]

The earliest molecular beam infrared experiments on Van der Waals complexes used photodissociation spectroscopy a molecular beam is irradiated witli a tunable infrared laser and tire molecular beam intensity is measured as a function of... [Pg.2443]

Chemical reactions of surfeces. Diffraction can be used qualitatively to identify different surface phases resulting from adsorption and chemical reaction at surfaces. Reaction rates can be investigated by following the evolution of diffracted beam intensities. [Pg.261]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

When there is a possibility of significant variation in detector response t constant beam intensity, it is often better to carry out comparative absorptiometry with a single detector. In a slow and cumbersome way, this was done by using the stand (Figure 3-7) in conjunction with the laboratory photometer. [Pg.91]

The development and the recent increase in availability of the scanning electron microscope with its considerable depth of field and reduced beam intensity has widened the range of samples which can be examined... [Pg.25]

Direct observations of the decompositions of a wide range of inorganic compounds [231—246], which are unstable in the electron beam, particularly azides and silver halides, have provided information concerning the mechanisms of radiolysis these are often closely related to the processes which operate during thermal decomposition. Sample temperatures estimated [234] to occur at low beam intensity are up to 470 K while, at higher intensity, 670 K may be attained. [Pg.26]

Direct kinetic measurements from the changes in diffracted beam intensities with time during heating of the reactant are illustrated in the work of Haber et al. [255]. Gam [126] has reviewed the apparatus used to obtain X-ray diffraction measurements in thermal analysis. Wiedemann [256] has designed equipment capable of giving simultaneous thermo-gravimetric and X-ray data under high vacuum. X-Ray diffraction studies enable the presence, or absence, of topotactic relationships between reactant and product to be detected [92,102,257—260], Results are sometimes considered with reference to the pseudomorphic shape of residual crystallites. [Pg.27]

The Incident Ion beam Intensity can be measured, and there are several tabulations of cross-section calculations. ( ) Also, the analyzer parameters, T, D, and d6 can be determined. The three aspects of this equation, which are not well understood nor easily determined. Include the number of atoms of a particular kind, the Ion survival probability, and the shadowing or geometric term. The first quantity Is quite often that which you would like to determine. The second two are often difficult to separate. Shadowing can be particularly Important when trying to observe second layer effect or when trying to determine the location of adsorbates.( ) However, shadowing for polycrystalline samples, though Important, Is very difficult to deal with quantitatively. [Pg.137]

For the NFS spectrum of [Fe(tpa)(NCS)2] recorded at 108 K, which exhibits a HS to LS ratio of about 1 1, a coherent and an incoherent superposition of the forward scattered radiation from 50% LS and 50% HS isomers was compared, each characterized by its corresponding QB pattern (Fig. 9.16) [42]. The experimental spectrum correlates much better with a purely coherent superposition of LS and HS contributions. However, this observation does not yield the unequivocal conclusion that the superposition is purely coherent, because in the 0.5 mm thick sample the longitudinal coherence predominates since many HS and LS domains lie along the forward scattering pathway. In order to arrive at a more conclusive result, the NFS measurement ought to be performed with a smaller ratio aJD on a much thinner sample. Such an experiment would require a sample with 100% eiuiched Fe and a much higher beam intensity. [Pg.494]

Faraday collector, simultaneously with U, U and U during the first sequence. This shortens the analysis routine, consuming less sample. Ion beam intensities are typically larger in MC-ICPMS than in TIMS due to the ease with which signal size can be increased by introducing a more concentrated solution. While this yields more precise data, non-linearity of the low-level detector response and uncertainties in its dead-time correction become more important for larger beam intensities, and must be carefully monitored (Cheng et al. 2000 Richter et al. 2001). [Pg.48]

In the experiment, target 1 (semiconductor ZnO film) was exposed to a beam of metal particles for a specified time interval by activating a shutter 3 (controlled by a magnetic device) installed in front of a diaphragm 4, with magnetic field on and magnetic field off. The rate of variation of an electric conductivity was measured. At small surface coverages, this rate is strictly directly proportional to the number of metal atoms incident on the film surface, i.e., (da/dt) /, where is the atomic beam intensity. The shorter was the time of exposition and... [Pg.252]

This shows the cyclotron energy used in each case, the different foils inserted in front of the samples inorder to monitor the beam intensity and to decrease the... [Pg.123]


See other pages where Beam intensity is mentioned: [Pg.1397]    [Pg.2440]    [Pg.2443]    [Pg.2444]    [Pg.2460]    [Pg.195]    [Pg.58]    [Pg.365]    [Pg.367]    [Pg.213]    [Pg.313]    [Pg.116]    [Pg.71]    [Pg.84]    [Pg.200]    [Pg.301]    [Pg.313]    [Pg.413]    [Pg.344]    [Pg.137]    [Pg.206]    [Pg.450]    [Pg.480]    [Pg.159]    [Pg.37]    [Pg.37]    [Pg.43]    [Pg.43]    [Pg.48]    [Pg.187]    [Pg.253]    [Pg.20]    [Pg.629]    [Pg.100]    [Pg.123]   
See also in sourсe #XX -- [ Pg.176 , Pg.178 ]




SEARCH



© 2024 chempedia.info