Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ceramic compositional

M.Maisl et al. Non-destructive testing of ceramics, composites and PCB by x-ray tomographic methods. In International Symp. on Computerized Tomography for Industrial Applications, Berlin, June 1994, pp.226-233... [Pg.572]

Cera.micA.bla.tors, Several types of subliming or melting ceramic ablators have been used or considered for use in dielectric appHcations particularly with quartz or boron nitride [10043-11 -5] fiber reinforcements to form a nonconductive char. Fused siHca is available in both nonporous (optically transparent) and porous (sHp cast) forms. Ford Aerospace manufactures a 3D siHca-fiber-reinforced composite densified with coUoidal siHca (37). The material, designated AS-3DX, demonstrates improved mechanical toughness compared to monolithic ceramics. Other dielectric ceramic composites have been used with performance improvements over monolithic ceramics (see COMPOSITE MATERIALS, CERAMIC MATRIX). [Pg.5]

Li Si O enstatite [14681-78-8] MgSiO diopside [14483-19-3], CaMgSi O and woUastonite [14567-57-2], CaSiO. A number of sihcate glass-ceramic compositions are given in Table 1. [Pg.321]

FIuorosihca.tes, Compared to the simple sUicates, these crystals have more complex chain and sheet stmctures. Examples from nature iaclude hydrous micas and amphiboles, including hornblende and nephrite jade. In glass-ceramics, fluorine replaces the hydroxyl ion fluorine is much easier to iacorporate ia glass and also makes the crystals more refractory. Eour commercial fluorosUicate glass-ceramic compositions and thek properties are Usted ia Table 2. [Pg.322]

Table 2. Fluorosilicate Glass-Ceramic Compositions and Properties... Table 2. Fluorosilicate Glass-Ceramic Compositions and Properties...
Appllca.tlons. The principal appHcations of nickel-base superalloys are in gas turbines, where they are utilized as blades, disks, and sheet metal parts. Abcraft gas turbines utilized in both commercial and military service depend upon superalloys for parts exposed to peak metal temperatures in excess of 1000°C. Typical gas turbine engines produced in the United States in 1990 utilized nickel and cobalt-base superalloys for 46% of total engine weight (41). However, programs for future aerospace propulsion systems emphasize the need for lightweight materials having greater heat resistance. For such apphcations, intermetallics matrix composites and ceramic composites are expected to be needed. [Pg.123]

Abrasives. Abrasive materials are either bonded or coated. Bonded phenoHc abrasives have superior strength and shock resistance compared to sintered ceramic compositions. The higher stabiUty permits higher rotational speeds for resin-binder wheels however, temperatures are lower than with ceramic wheels. [Pg.305]

In any brazing/soldering process, a molten alloy comes in contact with a surface of solid, which may be an alloy, a ceramic, or a composite material (see Ceramics Composite materials). For a molten alloy to advance over the soHd surface a special relationship has to exist between surface energies of the hquid—gas, soHd—gas, and Hquid—soHd interfaces. The same relationships should, in principle, hold in joining processes where a molten alloy has to fill the gaps existing between surfaces of the parts to be joined. In general, the molten alloy should have a lower surface tension than that of the base material. [Pg.241]

Sintered Materials or Cermets. Heavy weights and high landing speeds of modem aircraft or high speed trains require friction materials that ate extremely stable thermally. Organic or semimetallic friction matenals ate frequendy unsatisfactory for these appHcations. Cermet friction materials ate metal-bonded ceramic compositions (see Composite materials) (12—14). The metal matrix may be copper or iron (15). [Pg.273]

Nonpowder Synthesis. Many ceramic composites (qv) under iavestigation utilize reinforcing ceramic whiskers or fibers to achieve toughening (19). Whiskers (17,19,20) are produced by vapor-synthesis techniques. SiC whiskers can be produced by the rice hull or vapor—soHd (VS) method whereby rice hulls are pyrolyzed to produce a mixture of carbon, C, and Si02, and whiskers are produced by directional growth by vapor... [Pg.306]

Infiltration (67) provides a unique means of fabricating ceramic composites. A ceramic compact is partially sintered to produce a porous body that is subsequently infiltrated with a low viscosity ceramic precursor solution. Advanced ceramic matrix composites such as alumina dispersed in zirconia [1314-23-4] Zr02, can be fabricated using this technique. Complete infiltration produces a homogeneous composite partial infiltration produces a surface modified ceramic composite. [Pg.309]

Preceramic polymer precursors (45,68) can be used to make ceramic composites from polymer ceramic mixtures that transform to the desired material when heated. Preceramic polymers have been used to produce oxide ceramics and are of considerable interest in nonoxide ceramic powder processing. Low ceramic yields and incomplete burnout currently limit the use of preceramic polymers in ceramics processing. [Pg.309]

Reaction Formed Ceramics. A variety of specialty ceramics are produced by a combination of a chemical reaction and growth, or by simultaneous chemical reaction and consoHdation using relatively novel ceramic reaction forming and thermal consoHdation processes. Reaction forming processes provide the potential of producing unique ceramics and ceramic composites and high purity ceramics for specialty appHcations. [Pg.313]

Fig. 3. Tensile stress—strain curve for (-) reinforced ceramic and ( " ) fiber-reinforced ceramic composite. A represents the point where the matrix... Fig. 3. Tensile stress—strain curve for (-) reinforced ceramic and ( " ) fiber-reinforced ceramic composite. A represents the point where the matrix...

See other pages where Ceramic compositional is mentioned: [Pg.37]    [Pg.37]    [Pg.123]    [Pg.183]    [Pg.258]    [Pg.453]    [Pg.516]    [Pg.608]    [Pg.651]    [Pg.888]    [Pg.888]    [Pg.889]    [Pg.889]    [Pg.889]    [Pg.1067]    [Pg.16]    [Pg.319]    [Pg.319]    [Pg.321]    [Pg.324]    [Pg.324]    [Pg.326]    [Pg.223]    [Pg.41]    [Pg.215]    [Pg.215]    [Pg.310]    [Pg.321]    [Pg.321]    [Pg.44]    [Pg.46]    [Pg.46]    [Pg.47]    [Pg.49]    [Pg.55]    [Pg.55]    [Pg.57]   


SEARCH



Ceramer composites

Ceramic compositions

Ceramics) composites

© 2024 chempedia.info