Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser desorption, analytical method

Two slightly different laser desorption/ionisation methods were developed simultaneously by Karas and Hillenkamp [1] and Tanaka et al. [2]. Whereas Karas and Hillenkamp used small organic matrix molecules to assist and facilitate the desorption and ionisation of analytes (MALDI), Tanaka et al. used ultra-fine metal powders and glycerol. Zumbiihl et al. first analysed natural triterpenoid resins, dammar and mastic, both... [Pg.131]

Matrix-free direct laser desorption ionization of analyte has been studied on different kinds of surfaces without real success because degradation of the sample is usually observed. However, good results were obtained with the method called surface-activated laser desorption ionization (SALDI) [43] which uses graphite as the surface. But the use of porous silicon as a new surface is more promising and has led to the development of a new method called desorption ionization on silicon (DIOS) [44], Unlike the other matrix-free laser desorption ionization methods, DIOS allows ion formation from analyte with little or no degradation. [Pg.38]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

An application of surface-assisted laser desorption-ionization (SALDI) method for practical, ultrahigh sensitivity detection of aromatic amines by GC-MS is reported. The prototype analytical device for trace detection of different organic compounds is created. [Pg.103]

Matrix-assisted laser desorption ionization (MALDI) A method used for the ionization of high-molecular-weight compounds. In this approach, the analyte is crystallized with a solid matrix and then bombarded with a laser of a frequency which is absorbed by the matrix material. [Pg.307]

SFE-GC-MS is particularly useful for (semi)volatile analysis of thermo-labile compounds, which degrade at the higher temperatures used for HS-GC-MS. Vreuls et al. [303] have reported in-vial liquid-liquid extraction with subsequent large-volume on-column injection into GC-MS for the determination of organics in water samples. Automated in-vial LLE-GC-MS requires no sample preparation steps such as filtration or solvent evaporation. On-line SPE-GC-MS has been reported [304], Smart et al. [305] used thermal extraction-gas chromatography-ion trap mass spectrometry (TE-GC-MS) for direct analysis of TLC spots. Scraped-off material was gradually heated, and the analytes were thermally extracted. This thermal desorption method is milder than laser desorption, and allows analysis without extensive decomposition. [Pg.470]

Nondestructive radiation techniques can be used, whereby the sample is probed as it is being produced or delivered. However, the sample material is not always the appropriate shape or size, and therefore has to be cut, melted, pressed or milled. These handling procedures introduce similar problems to those mentioned before, including that of sample homogeneity. This problem arises from the fact that, in practice, only small portions of the material can be irradiated. Typical nondestructive analytical techniques are XRF, NAA and PIXE microdestructive methods are arc and spark source techniques, glow discharge and various laser ablation/desorption-based methods. On the other hand, direct solid sampling techniques are also not without problems. Most suffer from matrix effects. There are several methods in use to correct for or overcome matrix effects ... [Pg.589]

Laser desorption methods (such as LD-ITMS) are indicated as cost-saving real-time techniques for the near future. In a single laser shot, the LDI technique coupled with Fourier-transform mass spectrometry (FTMS) can provide detailed chemical information on the polymeric molecular structure, and is a tool for direct determination of additives and contaminants in polymers. This offers new analytical capabilities to solve problems in research, development, engineering, production, technical support, competitor product analysis, and defect analysis. Laser desorption techniques are limited to surface analysis and do not allow quantitation, but exhibit superior analyte selectivity. [Pg.737]

The most discriminating technique for proving the identity and purity of analyte peak of a chromatogram, especially for analyzing biological samples and natural products, is by using online LC-UV/MS or GC-MS/FTIR methods [15]. Alternatively, one could use a combination of TLC and MS, where direct determination on the TLC plates is made by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) [16]. [Pg.247]

An analytical method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied to provide information on the structure of copolymer 29, for example, repeat units and end groups <2002ANC6252>. [Pg.403]

Figure 2.9. Schematic of a matrix-assisted laser desorption/ionization (MALDI) event. The SEM micrograph depicts sinapinic acid-equine myoglobin crystal from a sample prepared according to the dried drop sample preparation method. In the desorption event neutral matrix molecules (M), positive matrix ions (M+), negative matrix ions (M-), neutral analyte molecules (N), positive analyte ions (+), and negative analyte ions (-) are created and/or transferred to the gas phase. Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With permission of John Wiley Sons, Inc. Figure 2.9. Schematic of a matrix-assisted laser desorption/ionization (MALDI) event. The SEM micrograph depicts sinapinic acid-equine myoglobin crystal from a sample prepared according to the dried drop sample preparation method. In the desorption event neutral matrix molecules (M), positive matrix ions (M+), negative matrix ions (M-), neutral analyte molecules (N), positive analyte ions (+), and negative analyte ions (-) are created and/or transferred to the gas phase. Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With permission of John Wiley Sons, Inc.
There is a recent hybrid between AP-MALDI and ESI, matrix-assisted laser desorption electrospray ionization (MALDESI) [202], where species desorbed from a MALDI target are subjected to an electrospray before entering the mass spectrometer. The method is similar to ELDI except that the analyte is embedded in a matrix as in MALDI. [Pg.38]

While fast atom bombardment (FAB) [66] and TSI [25] built up the basis for a substance-specific analysis of the low-volatile surfactants within the late 1980s and early 1990s, these techniques nowadays have been replaced successfully by the API methods [22], ESI and APCI, and matrix assisted laser desorption ionisation (MALDI). In the analyses of anionic surfactants, the negative ionisation mode can be applied in FIA-MS and LC-MS providing a more selective determination for these types of compounds than other analytical approaches. Application of positive ionisation to anionics of ethoxylate type compounds led to the abstraction of the anionic moiety in the molecule while the alkyl or alkylaryl ethoxylate moiety is ionised in the form of AE or APEO ions. Identification of most anionic surfactants by MS-MS was observed to be more complicated than the identification of non-ionic surfactants. Product ion spectra often suffer from a reduced number of negative product ions and, in addition, product ions that are observed are less characteristic than positively generated product ions of non-ionics. The most important obstacle in the identification and quantification of surfactants and their metabolites, however, is the lack of commercially available standards. The problems with identification will be aggravated by an absence of universally applicable product ion libraries. [Pg.376]

The year 2002 was an extraordinary year for liquid chromatography-mass spectrometry (LC/MS) practitioners. On October 9, 2002, the Royal Swedish Academy of Sciences annonnced their decision to award the Nobel Prize in Chemistry to John B. Fenn, Koichi Tanaka, and Kurt Wiithrich for their development of analytical methods for the identification and structnral analysis of biological macromolecnles. Fenn and Tanaka shared the prize for developing electrospray and soft-laser desorption, respectively. These soft-ionization techniqnes allow macromolecules to be ionized withont fragmentation. [Pg.500]

Analytes must be liberated from their associated solvent molecules as well as be ionized to allow mass separation. Several ionization methods enable ion production from the condensed phase and have been used for the coupling of CE to MS. Among them, atmospheric pressure ionization (API) methods, matrix-assisted laser desorption/ionization (MALDI), and inductively coupled plasma (ICP) ionization are mainly used. API techniques are undoubtedly the most widespread ionization sources and cover different analyte polarity ranges. [Pg.481]

The development of matrix-assisted laser desorption ionization (MAEDI) has advanced the entire field of mass spectrometry. To use this ionization method, the sample is mixed into a matrix that absorbs the laser wavelength extremely well (approximately 10,000 1 matrix analyte) and the mixture is placed on a solid substrate. Absorption of the laser causes the matrix to explode, ejecting the intact, nonvolatile molecules of interest into the gas phase. Proton exchange or alkali metal attachment occurs in the gas plume and the ionized species can be detected. [Pg.85]

Figure 14.4 Generation of ions by desorption methods. The sample is placed on a target and then hit either by accelerated electrons (secondary ion mass spectrometry), accelerated atoms (fast atom bombardment) or laser light (laser desorption/ ionization, matrix-assisted laser desorption/ionization). In the case of FAB and MALDl, the analyte is additionally embedded in a matrix, which also is desorbed during these processes. Figure 14.4 Generation of ions by desorption methods. The sample is placed on a target and then hit either by accelerated electrons (secondary ion mass spectrometry), accelerated atoms (fast atom bombardment) or laser light (laser desorption/ ionization, matrix-assisted laser desorption/ionization). In the case of FAB and MALDl, the analyte is additionally embedded in a matrix, which also is desorbed during these processes.
Major methods for introducing proteins and other macromolecules into mass spectrometers are electrospray and matrix-assisted laser desorption/ionization (MALDI).18-27 Most often, MALDI is used with a time-of-flight mass spectrometer, which can measure mlz up to 106. Typically, 1 p,L of a 10 jxM solution of analyte is mixed with 1 p,L of a 1-100 mM solution of an ultraviolet-absorbing compound such as 2,5-dihydroxybenzoic acid (the matrix) directly on a probe that fits into the source of the spectrometer. Evaporation of the liquid leaves an intimate mixture of fine crystals of matrix plus analyte. [Pg.494]


See other pages where Laser desorption, analytical method is mentioned: [Pg.203]    [Pg.204]    [Pg.204]    [Pg.396]    [Pg.540]    [Pg.559]    [Pg.47]    [Pg.230]    [Pg.738]    [Pg.54]    [Pg.240]    [Pg.165]    [Pg.959]    [Pg.1]    [Pg.381]    [Pg.411]    [Pg.269]    [Pg.289]    [Pg.461]    [Pg.444]    [Pg.178]    [Pg.13]    [Pg.53]    [Pg.384]    [Pg.362]    [Pg.166]    [Pg.69]    [Pg.355]    [Pg.356]    [Pg.102]    [Pg.112]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Laser desorption

© 2024 chempedia.info