Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrospray development

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

This method is still in use but is not described in this book because it has been superseded by more recent developments, such as particle beam and electrospray. These newer techniques have no moving parts, are quite robust, and can handle a wide variety of compound types. Chapters 8 through 13 describe these newer ionization techniques, including electrospray, atmospheric pressure ionization, plasmaspray, thermospray, dynamic fast-atom bombardment (FAB), and particle beam. [Pg.263]

To achieve sufficient vapor pressure for El and Cl, a nonvolatile liquid will have to be heated strongly, but this heating may lead to its thermal degradation. If thermal instability is a problem, then inlet/ionization systems need to be considered, since these do not require prevolatilization of the sample before mass spectrometric analysis. This problem has led to the development of inlet/ionization systems that can operate at atmospheric pressure and ambient temperatures. Successive developments have led to the introduction of techniques such as fast-atom bombardment (FAB), fast-ion bombardment (FIB), dynamic FAB, thermospray, plasmaspray, electrospray, and APCI. Only the last two techniques are in common use. Further aspects of liquids in their role as solvents for samples are considered below. [Pg.279]

Another big advance in the appHcation of ms in biotechnology was the development of atmospheric pressure ionization (API) techniques. There are three variants of API sources, a heated nebulizer plus a corona discharge for ionization (APCl) (51), electrospray (ESI) (52), and ion spray (53). In the APCl interface, the Ic eluent is converted into droplets by pneumatic nebulization, and then a sheath gas sweeps the droplets through a heated tube that vaporizes the solvent and analyte. The corona discharge ionizes solvent molecules, which protonate the analyte. Ions transfer into the mass spectrometer through a transfer line which is cryopumped, to keep a reasonable source pressure. [Pg.547]

In summary, it can be said that prior to the development of the thermospray interface there were an increasing nnmber of reports of the analytical application of LC-MS [3] bnt in this present anthor s opinion, based on a nnmber of years of using a moving-belt interface, the technique could not be considered to be routine . The thermospray interface changed this and with the commercial intro-dnction of the combined APCI/electrospray systems in the 1990s the technique, for it now may be considered as a true hybrid technique, has reached maturity (although this should not be taken as a suggestion that there will be no further developments). [Pg.135]

Electrospray ionization occurs by the same four steps as listed above for thermospray (see Section 4.6). In contrast to thermospray, and most other ionization methods nsed in mass spectrometry, it shonld be noted that electrospray ionization nnnsnally takes place at atmospheric pressure. A similar process carried out under vacuum is known as electrohydrodynamic ionization and gives rise to qnite different analytical results. This technique has not been developed into a commercial LC-MS interface and will not be considered further. [Pg.158]

A method for the development of a generic LC-electrospray-MS method for the analysis of acidic compounds using experimental design has been reported [5], From an HPLC perspective, this type of analysis often requires the use of an ion-pairing reagent to obtain separation however, many of these, such as tetraalkylammonium ions, are involatile and have undesirable effects on the performance of the mass spectrometer and more volatile alternatives have to be found - in this case, triethylamine was used. [Pg.190]

In this study, the effect of mobile-phase flow rate, or more accurately, the rate of flow of liquid into the LC-MS interface, was not considered but as has been pointed out earlier in Sections 4.7 and 4.8, this is of great importance. In particular, it determines whether electrospray ionization functions as a concentration-or mass-flow-sensitive detector and may have a significant effect on the overall sensitivity obtained. Both of these are of great importance when considering the development of a quantitative analytical method. [Pg.192]

A method has been reported for the quantification of five fungicides (shown in Figure 5.39) used to control post-harvest decay in citrus fruits to ensure that unacceptable levels of these are not present in fruit entering the food chain [26]. A survey of the literature showed that previously [27] APCl and electrospray ionization (ESI) had been compared for the analysis of ten pesticides, including two of the five of interest, i.e. carbendazim and thiabendazole, and since it was found that APCl was more sensitive for some of these and had direct flow rate compatibility with the HPLC system being used, APCl was chosen as the basis for method development. [Pg.246]

One approach to the problem of matrix effects is to prevent the matrix materials reaching the electrospray source by carrying out some form of clean-up prior to analysis and/or to employ chromatographic separation. It is not always possible, however, to develop a simple procedure for sample clean-up and since this approach involves further work-up with the associated increase in analysis time and potential for sample loss it is therefore not ideal. [Pg.271]

The fact that APCl and electrospray are soft ionization techniques is often advantageous because the molecular ion alone, in conjunction with HPLC separation, often provides adequate selectivity and sensitivity to allow an analytical method to be developed. Again, method development is important, particularly when more than one analyte is to be determined, when the effect of experimental parameters, such as pH, flow rate, etc., is not likely to be the same for each. Electrospray, in particular, is susceptible to matrix effects and the method of standard additions is often required to provide adequate accuracy and precision. [Pg.290]

The most recent progress in MS analysis of chlorophylls has been obtained with the development of atmospheric ionization methods such as atmospheric pressure chemical ionization (APCl) and electrospray ionization (ESI). These techniques have demonstrated much more sensitivity than thermospray ionization, detecting chloro-... [Pg.438]

Separation and detection methods Very refined chromatographic and electrophoretic separation techniques have been developed for metallothioneins. The detection is commonly based on the retention time and UV detection. Other researchers measured the element with e.g. ICP-MS to quantify the compotmd. Combination with electrospray MS-MS leads to the unequivocal identification of the species. [Pg.82]

Although introduction of FAB was a milestone in the development of mass-spectrometric ionisation techniques solving many biochemical-related problems, and was and still is a popular technique to use, it appears to be declining since the advent of electrospray. [Pg.369]

Thermospray was quite popular before the advent of electrospray, but has now given way to the more robust API techniques, although TSP sources continue to operate. Developed as an LC-MS interface, this technique calls for a continuous flow of sample in solution. [Pg.377]

ESI-MS is the most successful method of coupling a condensed phase separation technique to a mass spectrometer. Because the input to ESI is a liquid, electrospray serves as an interface between the mass spectrometer and liquid chromatographic techniques, including SEC and CE (capillary electrophoresis). In LC-MS the flow-rate should lie in the range recommended for the HPLC pump and the mass spectrometer (typically 0.001 -l.OmLmin-1). Recent advances in (nano)electrospray technology include the development of the use of very low solvent flow-rates (30 to 1000nLmin-1) [130,131],... [Pg.380]

The obvious alternative for the in-line flow-through cell in HPLC-FTIR is mobile-phase elimination ( transport interfacing), first reported in 1977 [495], and now the usual way of carrying out LC-FTIR, in particular for the identification of (minor) constituents of complex mixtures. Various spray-type LC-FTIR interfaces have been developed, namely, thermospray (TSP) [496], particle-beam (PB) [497,498], electrospray (ESP) [499] and pneumatic nebulisers [486], as compared by Som-sen et al. [500]. The main advantage of the TSP-based... [Pg.491]

In reduced-flow LC-MS systems, the solvent flow into the spectrometer is reduced to a level where the pumping system can cope. Essentially, three such systems have been developed direct-liquid-introduction (DLI), flowing FAB [531] and electrospray [532]. An alternative approach to belt transport interfacing is to deliver the column eluate directly into the MS source and use Cl techniques. Methods based on this principle are called direct-liquid-injection systems, which are comprised of capillary flow restrictors, diaphragms,... [Pg.503]

ESI and APCI are soft ionisation techniques which usually result in quasi-molecular ions such as [M + H]+ with little or no fragmentation molecular weight information can easily be obtained. However, experimental conditions can also be chosen in such a way that a sufficiently characteristic pattern is obtained, allowing verification [540]. ESI is amenable to thermally labile and nonvolatile molecules. Both ESI and APCI are much more sensitive than PB and very well suited for quantitative analysis, but less so for unknown samples. The choice among the two is usually determined by the application. Recently, nanoscale LC-ESI-MS has been developed [541]. The nano-electrospray ion source offers the highest sensitivity available for LC-MS (atto-to femtomole range) and can also be used as an off-line ion source. [Pg.505]

Many excellent reviews on the development, instrumentation and applications of LC-MS can be found in the literature [560-563]. Niessen [440] has recently reviewed interface technology and application of mass analysers in LC-MS. Column selection and operating conditions for LC-MS have been reviewed [564]. A guide to LC-MS has recently appeared [565]. Voress [535] has described electrospray instrumentation, Niessen [562] reviewed API, and others [566,567] have reviewed LC-PB-MS. For thermospray ionisation in MS, see refs [568,569]. Nielen and Buytenhuys [570] have discussed the potentials of LC-ESI-ToFMS and LC-MALDI-ToFMS. Miniaturisation (reduction of column i.d.) in LC-MS was recently critically evaluated [571]. LC-MS/MS was also reviewed [572]. Various books on LC-MS have appeared [164,433,434,573-575], some dealing specifically with selected ionisation modes, such as CF-FAB-MS [576] or API-MS [577],... [Pg.512]


See other pages where Electrospray development is mentioned: [Pg.324]    [Pg.324]    [Pg.1331]    [Pg.291]    [Pg.212]    [Pg.1029]    [Pg.190]    [Pg.238]    [Pg.250]    [Pg.279]    [Pg.321]    [Pg.314]    [Pg.401]    [Pg.821]    [Pg.830]    [Pg.493]    [Pg.60]    [Pg.61]    [Pg.398]    [Pg.434]    [Pg.274]    [Pg.382]    [Pg.396]    [Pg.544]    [Pg.26]    [Pg.2]    [Pg.24]    [Pg.182]   
See also in sourсe #XX -- [ Pg.291 ]

See also in sourсe #XX -- [ Pg.291 ]




SEARCH



© 2024 chempedia.info