Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser acronym

A laser (acronym for light amplification by stimulated emission of radiation) amplifies light in a different region of the electromagnetic spectrum by the same method that the maser amplifies microwaves. [Pg.242]

Laser Acronym that stands for light amplification by stimulated emission of radiation. Usually refers to an oscillator rather than an amplifier commonly also refers to similar systems that operate at non-optical frequencies or with nonelectromagnetic wave fields. [Pg.58]

The 70 years since these first observations have witnessed dramatic developments in Raman spectroscopy, particularly with the advent of lasers. By now, a large variety of Raman spectroscopies have appeared, each with its own acronym. They all share the conunon trait of using high energy ( optical ) light to probe small energy level spacings in matter. [Pg.1178]

The acronym LASER (Light Amplification via tire Stimulated Emission of Radiation) defines the process of amplification. For all intents and purjDoses tliis metliod was elegantly outlined by Einstein in 1917 [H] wherein he derived a treatment of the dynamic equilibrium of a material in a electromagnetic field absorbing and emitting photons. Key here is tire insight tliat, in addition to absorjDtion and spontaneous emission processes, in an excited system one can stimulate tire emission of a photon by interaction witli tire electromagnetic field. It is tliis stimulated emission process which lays tire conceptual foundation of tire laser. [Pg.2857]

The word laser is an acronym derived from light amplification by the stimulated emission of radiation . If the light concerned is in the microwave region then the alternative acronym maser is often used. Although the first such device to be constructed was the ammonia maser in 1954 it is the lasers made subsequently which operate in the infrared, visible or ultraviolet regions of the spectrum which have made a greater impact. [Pg.337]

The term laser is an acronym constmcted from light amplification by stimulated emission of radiation. The first operating laser was produced in 1960 (1). This laser, which used a crystal of mby [12174A9-17, chromium-doped alumina, Al202 Cr, and emitted a pulsed beam of collimated red light, immediately aroused scientific interest. [Pg.1]

The word laser is an acronym for light amplification by the stimulated emission of radiation. Lasers of all kinds consist of several basic components an active medium, an outside energy source, and an optical cavity with carefully designed mirrors on both ends. One of the mirrors is 100 percent reflective... [Pg.703]

The technique is referred to by several acronyms including LAMMA (Laser Microprobe Mass Analysis), LIMA (Laser Ionisation Mass Analysis), and LIMS (Laser Ionisation Mass Spectrometry). It provides a sensitive elemental and/or molecular detection capability which can be used for materials such as semiconductor devices, integrated optical components, alloys, ceramic composites as well as biological materials. The unique microanalytical capabilities that the technique provides in comparison with SIMS, AES and EPMA are that it provides a rapid, sensitive, elemental survey microanalysis, that it is able to analyse electrically insulating materials and that it has the potential for providing molecular or chemical bonding information from the analytical volume. [Pg.59]

LIBS Acronym for laser-induced breakdown spectroscopy. [Pg.518]

In contrast to the other ion sources, the MALDI source may operate under high vacuum or under atmospheric pressure. In the latter case the acronym AP-MALDI (atmospheric pressure matrix assisted laser desorption ionization) is used. [Pg.51]

The word LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. The physical process upon which lasers depend, stimulated emission, was first elucidated by Einstein in 1917 (1). Einstein showed that in quantized systems three processes involving photons must exist absorption, spontaneous emission, and stimulated emission. These may be represented as follows ... [Pg.455]

Lasers are devices for producing coherent light by way of stimulated emission. (Laser is an acronym for light amplification by stimulated emission of radiation.) In order to impose stimulated emission upon the system, it is necessary to bypass the equilibrium state, characterized by the Boltzmann law (Section 9.6.2), and arrange for more atoms to be in the excited-state E than there are in the ground-state E0. This state of affairs is called a population inversion and it is a necessary precursor to laser action. In addition, it must be possible to overcome the limitation upon the relative rate of spontaneous emission to stimulated emission, given above. Ways in which this can be achieved are described below, using the ruby laser and the neodymium laser as examples. [Pg.429]

The word laser is an acronym for light amplification by stimulated emission of radiation. [Pg.18]

In recent years luminescence nomenclature has become confusing within the literature and in practice. Luminescence involves both phosphorescence and fluorescence phenomena. While luminescence is the appropriate term when the specific photochemical mechanism is unknown, fluorescence is far more prevalent in practice. Moreover, the acronym LIE has historically inferred laser -induced fluorescence however, in recent years it has evolved to the more general term light -induced fluorescence due to the various light sources found within laboratory and real-time instruments. Within this chapter fluorescence and LIE are interchangeable terms. [Pg.338]

Shorthand notations such as ET (electron transfer), HAT (hydrogen atom transfer), BDE (bond dissociation energy), NHE (normal hydrogen electrode), CV (cyclic voltammetry), LFP (laser flash photolysis), EPR (electron paramagnetic resonance) and KIE (kinetic isotope effect) will be used throughout the chapter. In addition, recurring chemical compounds such as TEMPO (2,2,6,6-tetramethylpiperidine-Ai-oxyl), HBT (1-hydroxyben-zotriazole), BTNO (benzotriazole-A-oxyl), HPI (iV-hydroxyphthalimide), PINO (phthal-imide-iV-oxyl), NHA (A-hydroxyacetanilide) and a few others will be referred to by means of the capital-letter acronym. [Pg.706]

LEED. Acronym for Laser Energized Explosive Device. See under Laser... [Pg.570]

There are many different ionization techniques available to produce charged molecules in the gas phase, ranging from simple electron (impact) ionization (El) and chemical ionization (Cl) to a variety of desorption ionization techniques with acronyms such as fast atom bombardment (FAB), plasma desorption (PD), electrospray (ES), and matrix-assisted laser desorption ionization (MALDI) (Mano and Goto 2003). [Pg.151]

MASER. An acronym for microwave amplification by stimulated emission of radiation. The device is identical in theory of operation to the laser except that it operates at frequencies in Ihe microwave region of the electromagnetic spectrum, rather than in the light range. See also Lasers. [Pg.970]

Laser Laser is an acronym for Light Amplification by. Stimulated Emission of Radiation. Lasers are important in flow cytometry because, as a result of their coherent output, they are a means of illuminating cells with a compact, intense light beam that will produce fluorescence signals that are as bright as possible over a short time period. [Pg.248]

Major changes involved the sections 2.4 Quantum mechanics and Quantum chemistry, 2.7 Electromagnetic radiation and 2.12 Chemical kinetics, in order to include physical quantities used in the rapidly developing fields of quantum chemical computations, laser physics and molecular beam scattering. A new section 3.9 on Dimensionless quantities has been added in the present edition, as well as a Subject index and a list of Abbreviations and acronyms used in physical chemistry. [Pg.171]

Laser A source of ultraviolet, visible, or infrared radiation which produces light amplification by stimulated emission of radiation from which the acronym is derived. The hght emitted is coherent except for superradiance emission. [Pg.322]

A laser is a radiation source which produces a very high spectral radiance in a small spectral range at a fixed wavelength. A laser combines a radiation source with spectral isolation of its radiation - two important components of a spectrometer. The word laser is an acronym which stands for light amplification by stimulated emission of radiation. The essential elements of a laser are an active medium a pumping process to produce a population inversion and a suitable geometry or optical feedback elements (Moore et al., 1993). Most lasers are essentially Fabry-Perot interferometers whose cavities contain... [Pg.77]


See other pages where Laser acronym is mentioned: [Pg.161]    [Pg.927]    [Pg.161]    [Pg.927]    [Pg.118]    [Pg.340]    [Pg.221]    [Pg.204]    [Pg.62]    [Pg.172]    [Pg.518]    [Pg.493]    [Pg.562]    [Pg.563]    [Pg.174]    [Pg.346]    [Pg.909]    [Pg.916]    [Pg.417]    [Pg.830]    [Pg.178]    [Pg.340]    [Pg.597]    [Pg.158]    [Pg.335]    [Pg.167]    [Pg.6368]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Acronyms

© 2024 chempedia.info