Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization internal olefins

Shell Higher Olefin Process) plant (16,17). C -C alcohols are also produced by this process. Ethylene is first oligomerized to linear, even carbon—number alpha olefins using a nickel complex catalyst. After separation of portions of the a-olefins for sale, others, particularly C g and higher, are catalyticaHy isomerized to internal olefins, which are then disproportionated over a catalyst to a broad mixture of linear internal olefins. The desired fraction is... [Pg.459]

A key portion of the SHOP process is the isomerization—disproportionation (I/D) process in which excess light (C —C q) and heavy olefins (Cjg ) are converted to detergent range odd and even linear internal olefins. Eor each pass through this system, only 10—15% of the olefins fed are... [Pg.439]

Bisphosphites such as (7) combine excellent reactivity, straight-chain selectivity, and high resistance to the typical phosphite degradation reactions (29). Further, the corresponding 0x0 catalysts are excellent olefin isomerization catalysts so that high normal-to-branched isomer ratios are obtained even from internal olefins, enabling, in certain instances, the use of inexpensive mixed isomer olefin feedstocks. [Pg.471]

Several side reactions or post-cuting reactions are possible. Disproportionation reactions involving terminal hydride groups have been reported (169). Excess SiH may undergo hydrolysis and further reaction between silanols can occur (170—172). Isomerization of a terminal olefin to a less reactive internal olefin has been noted (169). Viaylsilane/hydride interchange reactions have been observed (165). [Pg.48]

The Nenitzescu process is presumed to involve an internal oxidation-reduction sequence. Since electron transfer processes, characterized by deep burgundy colored reaction mixtures, may be an important mechanistic aspect, the outcome should be sensitive to the reaction medium. Many solvents have been employed in the Nenitzescu reaction including acetone, methanol, ethanol, benzene, methylene chloride, chloroform, and ethylene chloride however, acetic acid and nitromethane are the most effective solvents for the process. The utility of acetic acid is likely the result of its ability to isomerize the olefinic intermediate (9) to the isomeric (10) capable of providing 5-hydroxyindole derivatives. The reaction of benzoquinone 4 with ethyl 3-aminocinnamate 35 illustrates this effect. ... [Pg.150]

The higher activity of the catalyst [(mall)Ni(dppmo)][SbFg] in [BMIM][PFg] (TOF = 25,425 h ) relative to the reaction under identical conditions in CFF2C12 (TOF = 7591 h ) can be explained by the fast extraction of products and side products out of the catalyst layer and into the organic phase. A high concentration of internal olefins (from oligomerization and consecutive isomerization) at the catalyst is known to reduce catalytic activity, due to the formation of fairly stable Ni-olefin complexes. [Pg.250]

On one hand, /z-alkanes of the molecular range C10-C16 are important starting materials for the synthesis of anionic surfactants. It is possible to dehydrogenate these hydrocarbons to isomeric /z-olefins with internal double bonds olefins) [4], which are also important initial products for the synthesis of an-... [Pg.5]

The formation of isomeric aldehydes is caused by cobalt organic intermediates, which are formed by the reaction of the olefin with the cobalt carbonyl catalyst. These cobalt organic compounds isomerize rapidly into a mixture of isomer position cobalt organic compounds. The primary cobalt organic compound, carrying a terminal fixed metal atom, is thermodynamically more stable than the isomeric internal secondary cobalt organic compounds. Due to the less steric hindrance of the terminal isomers their further reaction in the catalytic cycle is favored. Therefore in the hydroformylation of an olefin the unbranched aldehyde is the main reaction product, independent of the position of the double bond in the olefinic educt ( contrathermodynamic olefin isomerization) [49]. [Pg.24]

Because of the difficulty in selling large amounts of C10 and Cl8+ olefins, these were isomerized to internal olefins followed by disproportionation. Here the important internal olefins for the synthesis of LAB are obtained (Fig. 5) [34]. Equations (4) and (5) illustrate the isomerization and disporportionation on 1-octene as an example. [Pg.52]

Olefin isomerization process Isomerization of internal olefins to a- 54... [Pg.54]

When the reaction conditions approach the thermodynamic equilibrium, isomerization follows. The distribution of the double bond is statistical. The molecular formation in the disproportionation stage is also statistical. Normally a run will produce 10-15% by weight of product, which is then suitable for LAB synthesis after distillation. The physical data of these internal olefins are shown in Table 4 [41]. [Pg.55]

A catalyst used for the u-regioselective hydroformylation of internal olefins has to combine a set of properties, which include high olefin isomerization activity, see reaction b in Scheme 1 outlined for 4-octene. Thus the olefin migratory insertion step into the rhodium hydride bond must be highly reversible, a feature which is undesired in the hydroformylation of 1-alkenes. Additionally, p-hydride elimination should be favoured over migratory insertion of carbon monoxide of the secondary alkyl rhodium, otherwise Ao-aldehydes are formed (reactions a, c). Then, the fast regioselective terminal hydroformylation of the 1-olefin present in a low equilibrium concentration only, will lead to enhanced formation of n-aldehyde (reaction d) as result of a dynamic kinetic control. [Pg.460]

Tucci (54), studying mainly terminal olefins, cited two reasons for the high selectivity for linear products in the phosphine-modified cobalt catalysts (a) stereoselective addition of the hydride species to the olefinic double bond, and (b) inhibition of olefin isomerization. However, the results obtained with internal olefins as substrate tended to discount the likelihood of the second reason, and it is generally accepted that selective anti-Markovnikov addition arising from steric hindrance is the principal cause for linear products from nonfunctional olefins. [Pg.22]

Experiments with internal olefins demonstrated that isomerization is very rapid at temperatures at or above 150°C with no excess ligand, and is rapid in the presence of excess phosphines if the temperature is 200°C or above (Table XIX). [Pg.28]

Polymers containing a benzyldiphenylphosphine complexing group are also effective. Capka et al. (109) studied the catalyst formed from this type of organic substrate and RhClv(C2H4) j. 1-Hexene was hydrofor-mylated with 40 atm of 3/4 H2/CO to produce 56% n-heptaldehyde and 24% 2-methylhexaldehyde. Significant isomerization to internal olefins also occurred. [Pg.49]

The catalyst containing 2.0% Rh, insoluble in organic solvent, was used for hydroformylation of 1-hexene at 80°C and 43 atm of 1/1 H2/CO. The catalyst concentration was 1 mmole Rh per mole of olefin. After 4 hours a 41% yield of aldehyde was obtained, with a 2.5 1 isomer ratio. Some isomerization to internal olefins also occurred. A significant feature was the rhodium concentration of 2 ppm in the product. [Pg.50]

The various modes of bonding that have been observed for alkenes to the trinuclear osmium clusters are shown in Fig. 7 [see (88)]. The simple 77-bonded structure (a) is relatively unstable and readily converts to (c) the vinyl intermediate (b) is obtained by interaction of alkene with H2Os3(CO)10 and also readily converts to (c) on warming. Direct reaction of ethylene with Os3(CO)12 produces (c), which is considered to be formed via the sequence (a) — (b) — (c) and (d). Both isomers (c) and (d) are observed and involve metal-hydrogen and metal-carbon bond formation at the expense of carbon-hydrogen bonds. In the reaction of Os3(CO)12 with C2H4, the complex 112088(00)902112, (c), is formed in preference to (d). Acyclic internal olefins also react with the carbonyl, with isomerization, to yield a structure related to (c). Structure (c) is... [Pg.279]

Free radical addition of HBr to buta-1,2-diene (lb) affords dibromides exo-6b, (E)-6b and (Z)-6b, which consistently originate from Br addition to the central allene carbon atom [37]. The fact that the internal olefins (E)-6b and (Z)-6b dominate among the reaction products points to a thermodynamic control of the termination step (see below). The geometry of the major product (Z)-(6b) has been correlated with that of the preferred structure of intermediate 7b. The latter, in turn, has been deduced from an investigation of the configurational stability of the (Z)-methylallyl radical (Z)-8, which isomerizes with a rate constant of kiso=102s 1 (-130 °C) to the less strained E-stereoisomer (fc)-8 (Scheme 11.4) [38]. [Pg.706]

Fig. 11 Some recent developments for isomerizing hydroformylation of internal olefins... Fig. 11 Some recent developments for isomerizing hydroformylation of internal olefins...
Polyethylene glycols (PEG) have been employed as phase transfer agents (and as solvents) in a number of reactions(11). Application of PEG-400 to the Wacker reaction results in the oxidation of both terminal and internal olefins (e.g., isomeric butenes to butanone) (12). [Pg.10]

If an internal olefin is treated similarly and the resulting branched trialkylborane heated at about 160° in diethylene glycol dimethyl ether, the molecule is rearranged and finally the terminal trialkylborane is produced. The isomerization of the organoborane proceeds through a series of eliminations to regenerate olefin and dialkylborane, followed by... [Pg.23]

Double bond isomerization using molecular sieves (5A) was reported in the patent literature by Fleck and Wight of Union Oil Company [34] only a few years after synthetic zeolites became commercially available. More recently [35] ferrierite has also been claimed. The major initial uses were to convert a-olefins (1-olefins) into mixtures of internal olefins for further conversion, usually by oligomerization into various products-lube oil base stocks predominating. Inevitably, patents were issued noting the ability to convert internal olefins into mixtures containing greater concentrations of 1-olefins (e.g., [36]), but few practical processes have resulted. [Pg.485]

Olefin isomerization reactions range from some of the most facile using acid catalysts to moderately difficult and, as components of more complex reaction schemes such as catalytic cracking, may be among the most common reactions in hydrocarbon processing. As stand-alone reactions, they are primarily used to shift the equilibrium between terminal and internal olefins or the degree of branching of the olefin. While olefin isomerization was considered for the production of MTBE, today stand-alone olefin isomerization processes are only considered for a few special situations within a petrochemical complex. [Pg.488]

Raffinate-II typically consists of40 % 1-butene, 40 % 2-butene and 20 % butane isomers. [RhH(CO)(TPPTS)3] does not catalyze the hydroformylation of internal olefins, neither their isomerization to terminal alkenes. It follows, that in addition to the 20 % butane in the feed, the 2-butene content will not react either. Following separation of the aqueous catalyts phase and the organic phase of aldehydes, the latter is freed from dissolved 2-butene and butane with a counter flow of synthesis gas. The crude aldehyde mixture is fractionated to yield n-valeraldehyde (95 %) and isovaleraldehyde (5 %) which are then oxidized to valeric add. Esters of n-valeric acid are used as lubricants. Unreacted butenes (mostly 2-butene) are hydroformylated and hydrogenated in a high pressure cobalt-catalyzed process to a mixture of isomeric amyl alcohols, while the remaining unreactive components (mostly butane) are used for power generation. Production of valeraldehydes was 12.000 t in 1995 [8] and was expected to increase later. [Pg.112]

In a quest for a more environment-friendly process it has been found that reaction 8.4 can be catalyzed by Pd(II) complexes of various nitrogen-donor ligands (Scheme 8.1) under not too harsh conditions (100 °C, air) without the need of copper chlorides [10,11]. Of the investigated ligands, sulfonated batophenanthroline proved to be the best. Higher olefins, such as 1-hexene or cyclooctene were similarly transformed by this catalyst. Very importantly, there was no isomerization to internal olefins and 2-hexanone was formed with higher than 99 % selectivity. This outstanding selectivity is probably due to the absence of acid and Cu-chlorides. [Pg.212]

Unfortunately, the phosphine analogue was found to be more effective that the phosphinrte derivative, due to a more rapid isomerization to the internal olefin when using the latter catalyst. However, the system would be completely selective for the linear product (n-alkane) (Scheme 13.23). [Pg.340]

Again, approximately half of this effect will already be felt at the transition states for insertion and chain transfer. Thus, internal olefins are inserted less easily, oc-branched alkyls are more reactive towards insertion, and secondary alkyls tend to isomerize to primary alkyls. The abnormally low reactivity of Al—Me bonds towards olefin insertion must probably be explained in this way. The high reactivity of (f-Bu)3Al towards ethene insertion, despite its significant steric hindrance, might in part be due to the same effect. [Pg.148]


See other pages where Isomerization internal olefins is mentioned: [Pg.181]    [Pg.841]    [Pg.306]    [Pg.181]    [Pg.841]    [Pg.306]    [Pg.458]    [Pg.440]    [Pg.519]    [Pg.248]    [Pg.305]    [Pg.459]    [Pg.236]    [Pg.425]    [Pg.71]    [Pg.509]    [Pg.20]    [Pg.21]    [Pg.22]    [Pg.63]    [Pg.142]    [Pg.146]    [Pg.125]    [Pg.302]    [Pg.699]    [Pg.257]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Olefin isomerization

Olefins isomerized

© 2024 chempedia.info