Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutylene isoprene from

A commercial process based on the Prins reaction is the synthesis of isoprene from isobutylene and formaldehyde through the intermediacy of 4,4-dimethyl-l,3-dioxane (49—51) ... [Pg.492]

Natural mbber comes generally from southeast Asia. Synthetic mbbers are produced from monomers obtained from the cracking and refining of petroleum (qv). The most common monomers are styrene, butadiene, isobutylene, isoprene, ethylene, propylene, and acrylonitrile. There are numerous others for specialty elastomers which include acryUcs, chlorosulfonated polyethylene, chlorinated polyethylene, epichlorohydrin, ethylene—acryUc, ethylene octene mbber, ethylene—propylene mbber, fluoroelastomers, polynorbomene, polysulftdes, siUcone, thermoplastic elastomers, urethanes, and ethylene—vinyl acetate. [Pg.230]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

A partially cross-linked, isobutylene—isoprene—divinylbenzene terpolymer containing some unreacted substituted vinylbenzene appendages is commercially available from Polysar Division, Bayer AG. Because of the residual reactive functionality, it can be cross-linked by peroxides that degrade conventional butyl mbbets. It is employed primarily in the manufacture of sealant tapes and caulking compounds (31). [Pg.481]

Polyisobutylene and isobutylene—isoprene copolymers are considered to have no chronic hazard associated with exposure under normal industrial use. Some grades can be used in chewing-gum base, and are regulated by the PDA in 21 CPR 172.615. Vulcanized products prepared from butyl mbber or halogenated butyl mbber contain small amounts of toxic materials as a result of the particular vulcanization chemistry. Although many vulcanizates are inert, eg, zinc oxide cured chlorobutyl is used extensively in pharmaceutical stoppers, specific recommendations should be sought from suppHers. [Pg.487]

Until the mid-1950s the only polyolefins (polyalkenes) of commercial importance were polyethylene, polyisobutylene and isobutylene-isoprene copolymers (butyl rubber). Attempts to produce polymers from other olefins had, at best, resulted only in the preparation of low molecular weight material of no apparent commercial value. [Pg.247]

The reaction between isobutylene (separated from C4 fractions from cracking units or from cracking isobutane to isobutene) and formaldehyde produces a cyclic ether (dimethyl dioxane). Pyrolysis of dioxane gives isoprene and formaldehyde. The formaldehyde is recovered and recycled to the reactor. [Pg.106]

Table IV shows the data on rigidity changes of the end-sealing compounds at two dose levels. Rigidity was determined by torsional braid analysis (5). These data indicate that the blend of cured and uncured isobutylene-isoprene copolymer was softened most by the irradiation treatment, the blend of polychloroprene and butadiene-styrene copolymer softened the least, and the blend of polychloroprene and the uncured isobutylene-isoprene copolymer was intermediate. Increasing the irradiation dose from 3-4 Mrad to 6-7.5 Mrad decreased the rigidity of the three end-sealing compounds. The irradiation temperature did not significantly influence rigidity. Table IV shows the data on rigidity changes of the end-sealing compounds at two dose levels. Rigidity was determined by torsional braid analysis (5). These data indicate that the blend of cured and uncured isobutylene-isoprene copolymer was softened most by the irradiation treatment, the blend of polychloroprene and butadiene-styrene copolymer softened the least, and the blend of polychloroprene and the uncured isobutylene-isoprene copolymer was intermediate. Increasing the irradiation dose from 3-4 Mrad to 6-7.5 Mrad decreased the rigidity of the three end-sealing compounds. The irradiation temperature did not significantly influence rigidity.
There are three reviews of the use of isoprene in terpene synthesis, one of which is in Japanese. There is also an excellent review of the industrial synthesis of isoprene from isobutylene and formaldehyde which also mentions other isoprene syntheses. ... [Pg.279]

The objects of our investigations were four kinds of elastomers, of different structure and polarity, viz. cis-1,4-polybutadiene (BR)> butadiene-acrylonitrile copolymer (NBR), isobutylene-isoprene copolymers (IIR) and ethylene-propylene-diene terpolymer (EPT). They were mixed with plastomers low density polyethylene (PE] ), polystyrene (PS), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), polycaproamide (PCA) and polyacrylonitrile (PAN) (Table 1). The concentration of the plastomers in the mixtures was changed in the range from 0 to 50 pph of the elastomer. The polymers were blended at temperature T = 423 K by means of the micromill of the Plasti--Corder apparatus. After 24 hours, crosslinking substances, dicurayl peroxide (DCP) or sulphur and diphenylguanidine (S, DPG), were added at room temperature. The composition of the mixtures is given in Table 2. [Pg.144]

Synthetic rubbers (water washing of the bntylene-isobutylene fraction and divinyl from ammonia, and isoprene from carbonyl- and nitrogen-containing... [Pg.252]

Butyl rubber (HR) is an isobutylene-based rubber which includes copolymers of isobutylene and isoprene, halogenated butyl rubbers, and isobutylene/p-methylstyrene/bromo-p-methylstyrene terpoly-mers. HR can be slurry polymerized from isobutylene copolymerized with small amounts of isoprene in methyl chloride diluent at -130 to - 148°F (-90 to - 100°C). Halogenated butyl is produced by dissolving butyl rubber in a hydrocarbon solvent and introducing elemental halogen in gas or liquid state.Cross-linked terpolymers are formed with isobutylene + isoprene + divinylbenzene. [Pg.227]

Isobutylene-lsoprene-Divinylbenzene Terpolymers. A partially cross-linked terpolymer of isobutylene, isoprene, and partially reacted divinyl benzene is commercially available from Rubber Division, Bayer Inc., Canada. The residual vinyl functionality may be cross-linked with peroxides, a treatment that would normally degrade conventional butyl rubbers. This material is used primarily in the manufacture of sealant tapes and caulking compounds (45). [Pg.903]

Copolymerizations involving dienes such as the copolymerization of isobutylene with isoprene are important from the industrial point of view (3,4). Isoprene acts as a strong chain-transfer and terminating agent in the carbocationic polymerization of isobutylene (161), and at high concentration it leads to a cross-linked, insoluble product (180). Because of the limited composition range available for analysis, determination of the reactivity ratios in this system is rather difficult. Reactivity ratios published for the isobutylene/isoprene system are listed in Table 7. [Pg.947]

Fig. 25 Decrease in molecular weight determined for isobutylene-isoprene rubber (7 ( Cs)-irradiation dose rate 0.4 kGy.h ). The data were taken from [01Z2]. Fig. 25 Decrease in molecular weight determined for isobutylene-isoprene rubber (7 ( Cs)-irradiation dose rate 0.4 kGy.h ). The data were taken from [01Z2].
Material properties of polymers are determined by their chain miaostmctures. For polymers made from a single monomer type, the above-discussed molecular weight and distribution, chain stereoregularity, head-tail and trans-cis configurations, and so on all play important roles. For copolymers that contain multiple monomer types, chain composition, sequence, as well as their distributions, are added to the important microstmc-ture property list. With these new parameters, almost unlimited number of polymer types can be produced for better balance of properties for commercial applications. Outstanding commercial examples include acrylonittile-butadiene-styrene (ABS), SBS, Acrylan (acrylonittile-vinyl acetate), styrene-butadiene (SBR), butyl mbber (isobutylene-isoprene), Vinylite (vinyl chloride-vinyl acetate), and styrene-maleic anhydride (SMA). [Pg.811]

Although the avadabihty of butane—butylene streams containing high concentrations of isobutylene from steam crackers will increase and possibly make these technologies attractive, these same steam crackers also produce recoverable amounts of isoprene direcdy, particularly from heavier feedstocks. [Pg.374]

Monomers for manufacture of butyl mbber are 2-methylpropene [115-11-7] (isobutylene) and 2-methyl-l.3-butadiene [78-79-5] (isoprene) (see Olefins). Polybutenes are copolymers of isobutylene and / -butenes from mixed-C olefin-containing streams. For the production of high mol wt butyl mbber, isobutylene must be of >99.5 wt % purity, and isoprene of >98 wt % purity is used. Water and oxygenated organic compounds iaterfere with the cationic polymerization mechanism, and are minimized by feed purification systems. [Pg.480]

The production rate is 2—4 t/h, depending on the feed rate, monomer concentration in the feed, and conversion. The conversion of isobutylene and isoprene typically ranges from 75—95% and 45—85%, respectively, depending on the grade of butyl mbber being produced. The composition and mol wt of the polymer formed depend on the concentration of the monomers in the reactor Hquid phase and the amount of chain transfer and terminating species present. The Hquid-phase composition is a function of the feed composition and the extent of monomer conversion. In practice, the principal operating variable is the flow rate of the initiator/coinitiator solution to the reactor residence time is normally 30—60 minutes. [Pg.482]

Isobutylene (CH2=C(CH3)2) is a reactive C4 olefin. Until recently, almost all isobutylene was obtained as a by-product with other C4 hydrocarbons from different cracking processes. It was mainly used to produce alkylates for the gasoline pool. A small portion was used to produce chemicals such as isoprene and diisobutylene. However, increasing demand for oxygenates from isobutylene has called for other sources. [Pg.249]

Standard butyl rubber, which is a copolymer of isobutylene with about 2% of isoprene vulcanises in the same manner as natural rubber but, as it only contains a small proportion of polyisoprene, the cross-link percentage is much reduced. It is therefore not possible to make ebonite from a butyl rubber. The same vulcanisation chemistry, with some modifications, applies to ethylene-propylene terpolymers and brominated butyl rubber. [Pg.939]


See other pages where Isobutylene isoprene from is mentioned: [Pg.480]    [Pg.29]    [Pg.873]    [Pg.479]    [Pg.738]    [Pg.110]    [Pg.233]    [Pg.124]    [Pg.1007]    [Pg.738]    [Pg.386]    [Pg.901]    [Pg.109]    [Pg.98]    [Pg.596]    [Pg.5]    [Pg.176]    [Pg.313]    [Pg.481]    [Pg.271]    [Pg.14]    [Pg.42]    [Pg.562]    [Pg.227]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Isobutylene

Isobutylene-isoprene

© 2024 chempedia.info