Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halogenation butyl rubber

Halogenated Butyl Rubber. Halogenation at the isoprene site ia butyl mbber proceeds by a halonium ion mechanism leading to a double-bond shift and formation of an exomethylene alkyl haUde. Both chlorinated and brominated mbber show the predominate stmcture (1) (>80%), by nmr, as described eadier (33,34). Halogenation of the unsaturation has no apparent effect on the isobutylene backbone chains. Cross-linked samples do not crystallize on extension due to the chain irregularities introduced by the halogenated isoprene units. [Pg.484]

The standard polymers used for rubber linings consist of materials that are cross-linkable macromolecules which, on mixing with suitable reactants that form strong chemical bonds, change from a soft deformable substance into an elastic material. These polymers include natural rubber and its corresponding synthetic, c/s-polyisoprene, styrene-butadiene rubber, polychloroprene, butyl rubber, halogenated butyl rubbers, acrylonitrile-... [Pg.938]

Butyl rubber, halogenated butyl rubber linings and ethylene propylene rubber linings have excellent chemical resistance at temperatures up to 120°C. There are cases where butyl rubber linings have been subjected to temperatures down to —65°C without deterioration. Linings based on these polymers do not exhibit good abrasion resistance, which can only be rated as fair. [Pg.944]

Figure 11 General scheme for butyl rubber halogenation and observed structures... Figure 11 General scheme for butyl rubber halogenation and observed structures...
Vulcanization rates are higher than for normal butyl rubber because the presence of allylic halide increases the reactivity of the unsaturated sites. Brominated butyl rubber shows higher vulcanization rates than chlorinated butyl rubber. Halogenated butyl rubbers can be vulcanized with various reagents, e.g. diamines, dihydroxy aromatic compounds and zinc oxide. [Pg.72]

Cm.OROCARBONSANDCm.OROHYDROCARBONS - TOXIC AROMATICS] (Vol 6) Halogenated butyl rubber... [Pg.461]

Halogenated Butyl Rubber. The halogenation is carried out in hydrocarbon solution using elemental chlorine or bromine in a 1 1 molar ratio with enchained isoprene. The reactions ate fast chlorination is faster. Both chlorinated and brominated butyl mbbers can be produced in the same plant in blocked operation. However, there are some differences in equipment and reaction conditions. A longer reaction time is requited for hromination. Separate faciUties are needed to store and meter individual halogens to the reactor. Additional faciUties are requited because of the complexity of stabilising brominated butyl mbber. [Pg.483]

Forms of BR and polyisobutylene. The properties of butyl rubber and polyisobutylene depend on their moleeular weight, degree of unsaturation, nature of the stabilizer incorporated during manufacture and, in some cases, chemical modification. It is common to produce halogenated forms of butyl rubber to increase polarity and to provide a reactive site for alternate cure mechanisms [6],... [Pg.585]

Chemical reactions are used to modify existing polymers, often for specialty applications. Although of considerable importance for plastics, very few polymer reactions (aside from crosslinking) are important for elastomers. Chlorination and bromination of Butyl rubber to the extent of about one halogen atom per isoprene unit yields elastomers which are more easily crosslinked than Butyl rubber. Substitution occurs with rearrangement to yield an allylic halide structure... [Pg.25]

Butyl rubber (a copolymer of isobutylene and 1-3 mole per cent isoprene) and its halogenated derivatives have unsaturation in the carbon-carbon backbone and consequently do not have as good aging properties as EPDM. There are also reports (9-12) that ozone-resistant butyl rubber with a high degree of unsaturation can be prepared by copolymerization of isobutylene with either cyclopentadiene or 9-pinene. [Pg.172]

Resin cures utilise the same resins that are used for butyl rubber, but more resin (ca. 10-12 phr) and a halogen donor (10 phr), typically bromobutyl, or polychloroprene, are required. Although heat stability is slightly improved by resin curing when compared to sulphur cures, the effect is not as marked as in the resin curing of butyl. [Pg.98]

Butyl rubber(s), 4 433-458 9 561 14 265. See also Halogenated butyl rubber annual capacity, 4 451t carbon monoxide compatibility with, 5 4t chemical reactions, 4 448 copolymers, 4 444-446 cure systems for, 21 802-803 economic aspects, 4 451, 452t elastomeric vulcanizates, 4 448-450 formulation for reclaiming, 21 475t health and safety factors, 4 452-453 isobutylene polymerization mechanism, 4 434-436... [Pg.127]

Halogenated butyl rubber, 4 436 annual capacity, 4 451t blends with brominated... [Pg.416]

Nanocomposites are being used in tires, in particular, tire inner liners. Here, less permeable inner layers are achieved by the introduction of clad layers, which allow the use of a thinner inner liner, resulting in an overall lighter tire. Tire inner layers are typically derived from butyl rubber, often halogenated butyl rubber. [Pg.250]

When the polymeric initiator contains many halogens, there will be many grafted side chains, and the product is called a comb or brush polymer. A variety of polymers can be used as the polymeric initiator, including polymers containing vinyl chloride and 4-chloromethylstyrene units, and halogenated natural and butyl rubbers. Graft copolymers are discussed further in Chaps. 5, 6, and 9. [Pg.324]

The vulcanization of polychloroprene (Neoprene) is carried out in different ways. Vulcanization by sulfur, even with an accelerator, is not practiced to a large extent. Vulcanizations by metal oxides (without diamine), either alone or in combination with sulfur (sometimes together with an accelerator), give the best physical properties for the crosslinked product. Halogenated butyl rubber is crosslinked in a similar manner. The mechanism for crosslinking by metal oxide alone is not established [Stewart et al., 1985 Vukov, 1984]. [Pg.745]

Various halogenated polymers are used as the polymeric initiator for ATRP, for example, vinyl chloride-vinyl chloroacetate and styrene-p-chloromethylstyrene copolymers, bromi-nated butyl rubber, and chlorosulfonated polyethylene [Bomer and Matyjaszewski, 2002 Coskun and Temuz, 2003], (The vinyl chloride units have much lower reactivity for ATRP compared to the vinyl chloroacetate units because of steric reasons.) The density of grafting is adjusted by varying the copolymer composition. [Pg.757]

Berlin and coworkers (5,56) desired to obtain a material with an increased mechanical strength. They carried out a plasticization of bulk ami emulsion polystyrene molecular weight 80000 and 200000 respectively at 150-160° C, with polyisobutylene, butyl rubber, polychloroprene, polybutadiene, styrene rubber (SKS-30) and nitrile rubber (SKN 18 and SKN 40). The best results were obtained with the blends polystyrene-styrene rubber and polystyrene-nitrile rubber. An increase of rubber content above 20-25% was not useful, as the strength properties were lowered. An increase in the content of the polar comonomer, acrylonitrile, prevents the reaction with polystyrene and decreases the probability of macroradical combination. This feature lowers the strength, see Fig. 14. It was also observed that certain dyes acts as macroradical acceptors, due to the mobile atoms of hydrogen of halogens in the dye, AX ... [Pg.34]

Butyl and Halobutyl Rubber. Butyl mbber is made by the polymerization of isobutylene a small amount of isoprene is added to provide sites for curing. It is designated HR because of these monomers. Halogenation of butyl mbber with bromine or chlorine increases the reaction rate for vulcanization and laminates or blends of halobutyl are feasible for production of mbber goods. It is estimated that of the 100 million kg of butyl (HR) and halobutyl (HIIR) mbber in North America, over 90% is used in tire applications. The halogenated polymer is used in the innerliner of tubeless tires. Butyl mbber is used to make innertubes and curing bladders. The two major suppliers of butyl and halobutyl polymers in North America are Exxon and Bayer (see ELASTOLffiRS, synthetic-butyl rubber). [Pg.232]

Halogenated butyl rubbers have particularly advantageous adhesion behavior, flexural strength, service life and impermeability to air and water (40). The specific structure of the halogenated butyl rubber depends on the conditions of halogenation. [Pg.161]

Typical halogenation processes for making halobutyl rubbers involves the injection of chlorine or bromine into a solution of butyl rubber. The reactants are mixed vigorously in the halogenation reactor with a rather short resident time, typically less than 1 min, followed by the neutralization of the HC1 or HBr and removal of the unreacted halogen (13). The procedures of halogenation have been described in detail elsewhere (41,42). [Pg.161]

This regenerated halogen is thus available to further halogenate the butyl rubber, thereby increasing the halogenation utilization by as much as 70%. [Pg.161]

The chloride is used to manufacture silicones, tetramethyl lead and triptane (2,2,3 trimethylbutane). Lesser uses include the manufacture of butyl rubber, higher halogenated methanes, methyl cellulose, quaternary ammonium compounds, methyl mercaptan, methionine, fungicides and pesticides (primarily the Me-arsenate herbicides). Recently the chlorinated fluorocarbons have replaced CH3CI as high volume refrigerants and propellants (ref. 32) Tables 12 and 13 list the chemical and physical properties and potential numbers of workers exposed to the monohalomethanes. [Pg.367]

Butyl rubber is one of the older synthetic rubbers, having been developed in 1937. Because of the saturated nature of a polyolefin elastomer, the commercial polymer is actually a copolymer of isobutylene and isoprene. The isoprene is added to provide cure sites. In addition, halogenated (bromo or chloro) derivatives are available. [Pg.707]

Butyl rubber is produced at very low temperature (below — 90°C) to control the rapid exotherm, and to provide high molecular weight. The process consists of charging isobutylene along with isoprene (2-4%) with an inert diluent such as methyl chloride to a reactor to which a Friedel-Crafts catalyst is added. The polymerization is very rapid, and the polymer forms in a crumb or slurry in the diluent. Heat is removed via the reactor jacket. The slurry is steam-stripped to remove all volatiles. The catalyst is neutralized, and antioxidants are added to the slurry prior to drying.53 The halogenated derivatives are produced by the direct addition of the halogen to a solution of the isobutylene-isoprene polymer. [Pg.707]


See other pages where Halogenation butyl rubber is mentioned: [Pg.72]    [Pg.563]    [Pg.571]    [Pg.3]    [Pg.115]    [Pg.361]    [Pg.911]    [Pg.207]    [Pg.72]    [Pg.563]    [Pg.571]    [Pg.3]    [Pg.115]    [Pg.361]    [Pg.911]    [Pg.207]    [Pg.482]    [Pg.487]    [Pg.2461]    [Pg.123]    [Pg.131]    [Pg.78]    [Pg.122]    [Pg.236]    [Pg.265]    [Pg.254]    [Pg.664]    [Pg.461]    [Pg.389]    [Pg.321]    [Pg.435]   


SEARCH



Butyl rubber

Butyl rubbers, halogenated

Rubber halogenated

© 2024 chempedia.info