Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutylene copolymerization

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

Butyl rubber (HR) is an isobutylene-based rubber which includes copolymers of isobutylene and isoprene, halogenated butyl rubbers, and isobutylene/p-methylstyrene/bromo-p-methylstyrene terpoly-mers. HR can be slurry polymerized from isobutylene copolymerized with small amounts of isoprene in methyl chloride diluent at -130 to - 148°F (-90 to - 100°C). Halogenated butyl is produced by dissolving butyl rubber in a hydrocarbon solvent and introducing elemental halogen in gas or liquid state.Cross-linked terpolymers are formed with isobutylene + isoprene + divinylbenzene. [Pg.227]

The pendant olefin function can also be utilized as a monomer in copolymerization with other olefins. Data on this are generally lacking. The diethyl-aluminum chloride-titanium trichloride combination has been used to make a propylene-MA 1 copolymer with good adhesion.ASAs made from propylene, 1-butene, and isobutylene copolymerize with MA using radical initiation either neat or in solution. [Pg.174]

Uses. Besides polymerizing TFE to various types of high PTEE homopolymer, TEE is copolymerized with hexafluoropropylene (29), ethylene (30), perfluorinated ether (31), isobutylene (32), propylene (33), and in some cases it is used as a termonomer (34). It is used to prepare low molecular weight polyfluorocarbons (35) and carbonyl fluoride (36), as well as to form PTEE m situ on metal surfaces (37). Hexafluoropropylene [116-15-4] (38,39), perfluorinated ethers, and other oligomers are prepared from TEE. [Pg.349]

Butyl rubber and other isobutylene polymers of technological importance iaclude various homopolymers and isobutylene copolymers containing unsaturation achieved by copolymerization with isoprene. Bromination or chlorination of the unsaturated site is practiced commercially, and other modifications are beiag iavestigated. [Pg.480]

A living cationic polymeriza tion of isobutylene and copolymeriza tion of isobutylene and isoprene has been demonstrated (22,23). Living copolymerizations, which proceed in the absence of chain transfer and termination reactions, yield the random copolymer with narrow mol wt distribution and well-defined stmcture, and possibly at a higher polymerization temperature than the current commercial process. The isobutylene—isoprene copolymers are prepared by using cumyl acetate BCl complex in CH Cl or CH2CI2 at —30 C. The copolymer contains 1 8 mol % trans 1,4-isoprene... [Pg.480]

Polybutenes. Copolymerization of mixed isobutylene and 1-butene containing streams with a Lewis acid catalyst system yields low mol wt (several hundred to a few thousand) copolymers that are clear, colorless, viscous Hquids. The chain-ends are unsaturated, and they are often chemically modified through this functionaUty (7,73). [Pg.484]

New copolymers based on a copolymerization of isobutylene and p-methyl-styrene with improved heat resistance have been reported [64]. Once copolymerization was accomplished, the polymer was selectively brominated in the p-methyl position to yield a terpolymer called EXXPO. In contrast to butyl and halobutyl, the new terpolymer has no unsaturation in the backbone and therefore shows enhanced thermal stability and resistance to oxidation. Useful solvent-based adhesives can be formulated using the new terpolymer in combination with block copolymers [65]. The hydrocarbon nature of the new terpolymer results in excellent compatibility with hydrocarbon resins and oils. [Pg.653]

Cationic polymerizations work better when the monomers possess an electron-donating group that stabilizes the intermediate carbocation. For example, isobutylene produces a stable carbocation, and usually copolymerizes with a small amount of isoprene using cationic initiators. The product polymer is a synthetic rubber widely used for tire inner tubes ... [Pg.307]

Improved polyurethane can he produced hy copolymerization. Block copolymers of polyurethanes connected with segments of isobutylenes exhibit high-temperature properties, hydrolytic stability, and barrier characteristics. The hard segments of polyurethane block polymers consist of 4RNHCOO)-n, where R usually contains an aromatic moiety. [Pg.343]

Kennedy, J. P. and Chou,T. Poly (isobutylene-co-fS-Pinene) A New Sulfur Vulcanizable, Ozone Resistant Elastomer by Cationic Isomerization Copolymerization. Vol. 21, pp. 1—39. [Pg.155]

Polyacrylamides are nonionic polymers, usually with much higher molecular weights (MW from 100,000 up to 12 or 15 M). They often are copolymerized with polyacrylates. Depending on the MW ratios employed, they may act as colloidal dispersants, sludge conditioners, or flocculants. Nonionics such as polyacrylamides (and isobutylenes) are particularly useful at dispersing uncharged particles. [Pg.446]

In a series of patents17-20, Italian workers disclosed copolymerization of isobutylene and isoprene using Et2AlCl and a host of initiators, e.g. R -C-X, where... [Pg.88]

In a series of seven recent publications, these Italian authors21-27 reported isobutylene homo- and copolymerizations using alkylaluminum coinitiators in the presence of halogen, interhalogen compounds and alkyl halide initiators. The following conclusions21 are reported in the first paper. [Pg.88]

Nagy, A., Qrszagh, I., and Kennedy, J.P. Living carbocationic copolymerizations. II. Reactivity ratios and microstructures of isobutylene/p-methylstyrene copolymers, J. Phys. Org. Chem., 8, 273, 1995. Puskas, J.E. and Paulo, C. Synthesis and Characterization of Hyperbranched Polyisobutylenes. Proceedings of the World Polymer Congress (lUPAC Macro 2000), 384, 2000. [Pg.217]

Butyl rubber (a copolymer of isobutylene and 1-3 mole per cent isoprene) and its halogenated derivatives have unsaturation in the carbon-carbon backbone and consequently do not have as good aging properties as EPDM. There are also reports (9-12) that ozone-resistant butyl rubber with a high degree of unsaturation can be prepared by copolymerization of isobutylene with either cyclopentadiene or 9-pinene. [Pg.172]

Applying these methodologies monomers such as isobutylene, vinyl ethers, styrene and styrenic derivatives, oxazolines, N-vinyl carbazole, etc. can be efficiently polymerized leading to well-defined structures. Compared to anionic polymerization cationic polymerization requires less demanding experimental conditions and can be applied at room temperature or higher in many cases, and a wide variety of monomers with pendant functional groups can be used. Despite the recent developments in cationic polymerization the method cannot be used with the same success for the synthesis of well-defined complex copolymeric architectures. [Pg.34]

The most industrially significant polymerizations involving the cationic chain growth mechanism are the various polymerizations and copolymerizations of isobutylene. In fact, about 500 million pounds of butyl rubber, a copolymer of isobutylene with small amounts of isoprene, are produced annually in the United States via cationic polymerization [126]. The necessity of using toxic chlorinated hydrocarbon solvents such as dichloromethane or methyl chloride as well as the need to conduct these polymerizations at very low temperatures constitute two major drawbacks to the current industrial method for polymerizing isobutylene which may be solved through the use of C02 as the continuous phase. [Pg.130]

Uses Copolymerized with methyl acrylate, methyl methacrylate, vinyl acetate, vinyl chloride, or 1,1-dichloroethylene to produce acrylic and modacrylic fibers and high-strength fibers ABS (acrylonitrile-butadiene-styrene) and acrylonitrile-styrene copolymers nitrile rubber cyano-ethylation of cotton synthetic soil block (acrylonitrile polymerized in wood pulp) manufacture of adhesives organic synthesis grain fumigant pesticide monomer for a semi-conductive polymer that can be used similar to inorganic oxide catalysts in dehydrogenation of tert-butyl alcohol to isobutylene and water pharmaceuticals antioxidants dyes and surfactants. [Pg.81]

Butyl rubber (HR) is widely used for inner tubes and as a sealant. It is produced using the cationic polymerization with the copolymerization of isobutylene in the presence of a small amount (10%) of isoprene. Thus, the random copolymer chain contains a low concentration of widely spaced isolated double bonds, from the isoprene, that are later cross-linked when the butyl rubber is cured. A representation is shown in structure 5.20 where the number of units derived from isobutylene units greatly outnumbers the number of units derived from the isoprene monomer. The steric requirements of the isobutylene-derived units cause the chains to remain apart giving it a low stress to strain value and a low Tg. [Pg.140]

The major four-carbon feedstock molecules are 1,3-butadiene and isobutylene, both involved in the synthesis of many monomers and intermediates. Butadiene is copolymerized with styrene to form SBR and with acrylonitrile to form ABS rubbers. [Pg.528]

Over 5.5 billion pounds of synthetic rubber is produced annually in the United States. The principle elastomer is the copolymer of butadiene (75%) and styrene (25) (SBR) produced at an annual rate of over 1 million tons by the emulsion polymerization of butadiene and styrene. The copolymer of butadiene and acrylonitrile (Buna-H, NBR) is also produced by the emulsion process at an annual rate of about 200 million pounds. Likewise, neoprene is produced by the emulsion polymerization of chloroprene at an annual rate of over 125,000 t. Butyl rubber is produced by the low-temperature cationic copolymerization of isobutylene (90%) and isoprene (10%) at an annual rate of about 150,000 t. Polybutadiene, polyisoprene, and EPDM are produced by the anionic polymerization of about 600,000, 100,000, and 350,000 t, respectively. Many other elastomers are also produced. [Pg.554]

We have utilized somewhat less-effective optional approaches to copolymer purification with attendant catalyst recovery. One of these methods involved the replacement of the f-butyl substituents on the 5-position of the phenolate ligands with poly(isobutylene) (PIB) groups, as illustrated in Fig. 14 [39]. Importantly, this chromium(III) catalyst exhibited nearly identical activity as its 3,5-di-t-butyl analog for the copolymerization of cyclohexene oxide and carbon dioxide. The PIB substituents on the (salen)CrCl catalysts provide high solubility in heptanes once the copolymer is separated from the metal center by a weak acid. [Pg.15]

Sulfuric acid finds commercial application in the polymerization of isobutylene to diisobutylene (a mixture of the two 2,4,4-trimethylpen-tenes) and the copolymerization of isobutylene with the n-butylenes to obtain a more complex mixture of octylenes. Dilute (65-70 %) acid is used at 20-35° for the polymerization of only the isobutylene. The copolymerization occurs in the so-called hot acid polymerization process in which the dilute sulfuric acid is employed at about 80-90°. If more concentrated sulfuric acid is used, particularly acid of concentration above about 90%, conjunct polymerization occurs even at —35°. [Pg.23]

Formation of XXVII by loss of a proton from the tertiary carbon atom in the neopentyl group of XXVI rather than from the tertiary carbon atom in the secondary isopentyl group is, however, hardly to be expected. Furthermore, the addition of a tertiary olefin to a secondary carbonium ion is also unexpected (compare the results on the copolymerization of n-butylene with isobutylene, page 46). A somewhat more likely combination consists of the addition of the tertiary carbonium ion. XXVIII to fert-butylethylene (XXIX) followed by a 1,3-shift of a... [Pg.41]

Copolymerization of isobutylene with 2-butene in the presence of hydroxyfluorboric acid at 20-25° followed by hydrogenation of the polymer yielded a liquid product 36% of which was an octane fraction consisting (by infrared analysis) of 4% 2,2,4-trimethylpentane, 27%... [Pg.47]


See other pages where Isobutylene copolymerization is mentioned: [Pg.484]    [Pg.484]    [Pg.245]    [Pg.246]    [Pg.313]    [Pg.296]    [Pg.480]    [Pg.481]    [Pg.481]    [Pg.482]    [Pg.482]    [Pg.12]    [Pg.85]    [Pg.89]    [Pg.562]    [Pg.4]    [Pg.227]    [Pg.203]    [Pg.733]    [Pg.30]    [Pg.44]    [Pg.46]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Isobutylene

Isobutylene styrene copolymerization

© 2024 chempedia.info