Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Irreversible utilization

Several interesting hypotheses resulted from this model (Green et al, 1985). (1) Plasma retinol recycled 12 times before irreversible loss and its turnover rate (nmol/day) was 13 times the disposal rate (24 nmol/day). That is, in support of our previous results (Lewis et al, 1981), an average plasma retinol molecule apparently recycles many times before irreversible utilization. (2) In contrast to the belief that the liver is the sole source of plasma retinol/RBP, our model predicted that 55% of plasma retinol input was from the liver and 45% was from extrahepatic tissues. (3) The model predicted that, in these rats that had marginal liver vitamin A stores and that were in slight negative vitamin A balance, almost half of the whole-... [Pg.9]

The acid monolayers adsorb via physical forces [30] however, the interactions between the head group and the surface are very strong [29]. While chemisorption controls the SAMs created from alkylthiols or silanes, it is often preceded by a physical adsorption step [42]. This has been shown quantitatively by FTIR for siloxane polymers chemisorbing to alumina illustrated in Fig. XI-2. The fact that irreversible chemisorption is preceded by physical adsorption explains the utility of equilibrium adsorption models for these processes. [Pg.395]

Transformations in the Solid State. From a practical standpoint, the most important soHd-state transformation of PB involves the irreversible conversion of its metastable form II developed during melt crystallization into the stable form I. This transformation is affected by the polymer molecular weight and tacticity as well as by temperature, pressure, mechanical stress, and the presence of impurities and additives (38,39). At room temperature, half-times of the transformation range between 4 and 45 h with an average half-time of 22—25 h (39). The process can be significantly accelerated by annealing articles made of PB at temperatures below 90°C, by ultrasonic or y-ray irradiation, and by utilizing various additives. Conversion of... [Pg.427]

Organic molecules thus far identified, such as those fisted above, appear either to have irreversible antifertifity effects, to be inherently toxic, or to affect libido. It has been demonstrated that sperm count could be depressed in men injected with large doses of androgens. However, questions about the potential utility of androgens as male antifertifity agents are stiU debated. [Pg.123]

Stereoselective epoxidation can be realized through either substrate-controlled (e.g. 35 —> 36) or reagent-controlled approaches. A classic example is the epoxidation of 4-t-butylcyclohexanone. When sulfonium ylide 2 was utilized, the more reactive ylide irreversibly attacked the carbonyl from the axial direction to offer predominantly epoxide 37. When the less reactive sulfoxonium ylide 1 was used, the nucleophilic addition to the carbonyl was reversible, giving rise to the thermodynamically more stable, equatorially coupled betaine, which subsequently eliminated to deliver epoxide 38. Thus, stereoselective epoxidation was achieved from different mechanistic pathways taken by different sulfur ylides. In another case, reaction of aldehyde 38 with sulfonium ylide 2 only gave moderate stereoselectivity (41 40 = 1.5/1), whereas employment of sulfoxonium ylide 1 led to a ratio of 41 40 = 13/1. The best stereoselectivity was accomplished using aminosulfoxonium ylide 25, leading to a ratio of 41 40 = 30/1. For ketone 42, a complete reversal of stereochemistry was observed when it was treated with sulfoxonium ylide 1 and sulfonium ylide 2, respectively. ... [Pg.5]

Diethanolamine is a favored absorbent due to its lower corrosion rate, smaller amine loss potential, fewer utility requirements, and minimal reclaiming needs. Diethanolamine also reacts reversibly with 75% of carbonyl sulfides (COS), while the mono- reacts irreversibly with 95% of the COS and forms a degradation product that must be disposed of. [Pg.4]

As these freely reversible aldol additions often have less favorable equilibrium constants [30,34], synthetic reactions usually have to be driven by an excess of pyruvate to achieve satisfactory conversions. A few related enzymes have been identified that utilize phosphoenolpyruvate instead of pyruvate, which upon C—C bond formation releases inorganic phosphate, and thus renders the aldol addition essentially irreversible (Figure 10.4) [16]. Although attractive from a synthetic point ofview, the latter enzymes have been less studied as yet for preparative applications [35]. [Pg.278]

The pathway of gluconeogenesis in the liver and kidney utilizes those reactions in glycolysis which are reversible plus four additional reactions that circumvent the irreversible nonequilibrium reactions. [Pg.162]

Utility. Insufficient data Is available on the measurement of 1,25(0H)2D3 for evaluation of Its utility In clinical medicine. A major breakthrough In methodology will be needed before routine application will be possible. This could come with the development of a battery of radioimmunoassays for the measurement of all of the vitamin D metabolites. So far, however, the development of antibodies to vitamin D and Its metabolites has been limited by apparently Irreversable changes In the Important B ring of the sterol which occur during Its conjugation to Immunogenic proteins. [Pg.53]

Panesh et al. [157] were the first to make an attempt to detect rare gas metastable atoms (RGMAs) with the aid of semiconductor sensors. The sensing element (a sensor) was represented by a sintered polycrystalline film of ZnO metastable atoms were obtained in a neon ambient by electron impact. It was shown that electrical conductivity of ZnO film irreversibly increases under the action of RGMAs. However, the signals obtained were too small and that did not allow one to utilize the sensing technique to survey the processes with participation of metastable atoms. [Pg.326]

Accessible work potential is called the exergy that is the maximum amount of work that may be performed theoretically by bringing a resource into equilibrium with its surrounding through a reversible process. Exergy analysis is essentially a TA, and utilizes the combined laws of thermodynamics to account the loss of available energy. Exergy is always destroyed by irreversibilities in a system, and expressed by... [Pg.136]

Chloramphenicol was the first orally active, broad-spectrum antibiotic to be used in the clinic, and remains the only antibiotic which is marketed in totally synthetic form. Its initial popularity was dampened, and its utilization plummeted when it was found that some patients developed an irreversible aplastic anemia from use of the drug. Of the hundreds of analogues synthesized, none are significantly more potent or certain to be safer than chloramphenicol itself. Two analogues have been given generic names and fall into this chemical classification. It was found early in the game that activity was retained with p-substituents, and that... [Pg.45]

Grignard reagents act as strong nucleophiles and the addition reaction is essentially irreversible. The end-products of addition, after aqueous hydrolysis (of, for example, R3C—OMgX), are alcohols (R3C—OH). It is, however, important to emphasise that the utility of Grignard, and similar, additions to C=0 is as a general... [Pg.222]

Cyclic voltametric analysis has been utilized to determine material properties of this class of heterocyclic compounds. All the DTPs 23 <2003JOC2921 > exhibited a well-defined irreversible oxidation presumably corresponding to the formation of the radical cation. When scanned to higher positive potentials, it resulted in two consecutive broad oxidations for most of the DTPs. The second oxidation is quite weak, followed by a more intense and well-defined third oxidation. Coupling of thiophene radical cation is usually rapid (r <10-5 s) <1995SM(75)95>. These additional broad waves most likely correspond to the oxidation of coupled products rather than further DTP oxidations. The electrochemical data of the DTP S 23 are given in the Table 10. [Pg.646]

The disadvantages described above in terms of the irreversibility of the polyion response stimulated further research efforts in the area of polyion-selective sensors. Recently, a new detection technique was proposed utilizing electrochemically controlled, reversible ion extraction into polymeric membranes in an alternating galvanostatic/potentiostatic mode [51]. The solvent polymeric membrane of this novel class of sensors contained a highly lipophilic electrolyte and, therefore, did not possess ion exchange properties in contrast to potentiometric polyion electrodes. Indeed, the process of ion extraction was here induced electrochemically by applying a constant current pulse. [Pg.113]

The correlation (or lack of correlation) of other physiochemical characteristics has not yet been established. For instance, are all surfactants irritants Can one classify severity by the size of the molecule Can octanol water partition coefficients predict irritation potential does a propensity to partition out of the ocular fluid mean that a compound presents more of an irritation hazard than one which is more water soluble Theoretically, these data should reflect the ability of a compound to penetrate the eye and cause an irreversible lesion. However, until definitive data are available, physical and chemical parameters will probably have limited utility in an overall assessment of irritation. [Pg.658]

Initial solid phase synthesis25 was carried out on Merrifield s resin (1 % crosslinked chloromethylated styrene/divinylbenzene copolymer, 200-400 mesh) because of its track record in solid-phase peptide synthesis.26 Unfortunately, the Merrifield resin has limitations as a carbohydrate carrier to study interactions between the carbohydrates and relevant binding proteins. The hydrophobic nature of the resin leads to nonspecific, irreversible protein adsorption.27 Later work utilized Rapp s TentaGel, an amphiphilic, polyethylene glycol resin.28... [Pg.50]


See other pages where Irreversible utilization is mentioned: [Pg.79]    [Pg.12]    [Pg.314]    [Pg.79]    [Pg.12]    [Pg.314]    [Pg.207]    [Pg.394]    [Pg.326]    [Pg.52]    [Pg.39]    [Pg.535]    [Pg.223]    [Pg.95]    [Pg.643]    [Pg.1004]    [Pg.241]    [Pg.278]    [Pg.562]    [Pg.155]    [Pg.12]    [Pg.134]    [Pg.215]    [Pg.323]    [Pg.56]    [Pg.218]    [Pg.357]    [Pg.263]    [Pg.310]    [Pg.115]    [Pg.152]    [Pg.241]    [Pg.190]    [Pg.90]    [Pg.182]   
See also in sourсe #XX -- [ Pg.12 , Pg.40 ]

See also in sourсe #XX -- [ Pg.12 ]




SEARCH



© 2024 chempedia.info