Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization numbers

Specific Ionization—Number of ion pairs per unit length of path of ionizing radiation in a medium e.g., per centimeter of air or per micrometer of tissue. [Pg.278]

This expression is different from that first proposed by Bodenstein.28) Alyea and Lind2 found the same rate law for the reaction induced by a-particle bombardment, except that the specific ionization (number of ion pairs produced) replaced 70 in eq. (3-j). Bodenstein, Lenher, and Wagner28 further examined the photochemical reaction between 200 and 300°C and the thermal reaction at temperatures over 400°C. They proposed the mechanism... [Pg.95]

Formula Class Relative Mole Percent of Those Compounds That Ionized Number of Homologous Series Z Number Range Number of Individual Homologs Observed Carbon Number Range... [Pg.284]

This type of analysis requires several chromatographic columns and detectors. Hydrocarbons are measured with the aid of a flame ionization detector FID, while the other gases are analyzed using a katharometer. A large number of combinations of columns is possible considering the commutations between columns and, potentially, backflushing of the carrier gas. As an example, the hydrocarbons can be separated by a column packed with silicone or alumina while O2, N2 and CO will require a molecular sieve column. H2S is a special case because this gas is fixed irreversibly on a number of chromatographic supports. Its separation can be achieved on certain kinds of supports such as Porapak which are styrene-divinylbenzene copolymers. This type of phase is also used to analyze CO2 and water. [Pg.71]

Ecole Nationale Superieure du Petrole et des Moteurs Formation Industrie end point (or FBP - final boiling point) electrostatic precipitation ethyl tertiary butyl ether European Union extra-urban driving cycle volume fraction distilled at 70-100-180-210°C Fachausschuss Mineralol-und-Brennstoff-Normung fluid catalytic cracking Food and Drug Administration front end octane number fluorescent indicator adsorption flame ionization detector... [Pg.501]

Lias S G 1998 ionization energy evaiuation NIST Chemistry WebBook, NIST Standard Reference Database Number 69 ed W G Maiiard and P J Linstrom (Gaithersburg, MD Nationai institute of Standards and Technoiogy)... [Pg.827]

Another example of a teclmique for detecting absorption of laser radiation in gaseous samples is to use multiphoton ionization with mtense pulses of light. Once a molecule has been electronically excited, the excited state may absorb one or more additional photons until it is ionized. The electrons can be measured as a current generated across the cell, or can be counted individually by an electron multiplier this can be a very sensitive technique for detecting a small number of molecules excited. [Pg.1123]

The record m the number of absorbed photons (about 500 photons of a CO2 laser) was reached with the CgQ molecule [77]. This case proved an exception in that the primary reaction was ionization. The IR multiphoton excitation is the starting pomt for a new gas-phase photochemistry, IR laser chemistry, which encompasses numerous chemical processes. [Pg.2131]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

Figure B2.5.16. Different multiphoton ionization schemes. Each scheme is classified according to the number of photons that lead to resonant intennediate levels and to the ionization continuum (liatched area). Adapted from [110]. Figure B2.5.16. Different multiphoton ionization schemes. Each scheme is classified according to the number of photons that lead to resonant intennediate levels and to the ionization continuum (liatched area). Adapted from [110].
Figure Cl.4.13. Trap modulation experiment showing much greater deptli of ion intensity modulation (by more tlian one order of magnitude) tlian fluorescence or atom number modulation, demonstrating tliat excited atoms are not tire origin of tire associative ionizing collisions. Figure Cl.4.13. Trap modulation experiment showing much greater deptli of ion intensity modulation (by more tlian one order of magnitude) tlian fluorescence or atom number modulation, demonstrating tliat excited atoms are not tire origin of tire associative ionizing collisions.
Micellization is a second-order or continuous type phase transition. Therefore, one observes continuous changes over the course of micelle fonnation. Many experimental teclmiques are particularly well suited for examining properties of micelles and micellar solutions. Important micellar properties include micelle size and aggregation number, self-diffusion coefficient, molecular packing of surfactant in the micelle, extent of surfactant ionization and counterion binding affinity, micelle collision rates, and many others. [Pg.2581]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

The first line contains the number of ionizable sites, M. Subsequent lines are organized in blocks whose first line contains information about the group... [Pg.185]

The Monte Carlo approach, although much slower than the Hybrid method, makes it possible to address very large systems quite efficiently. It should be noted that the Monte Carlo approach gives a correct estimation of thermodynamic properties even though the number of production steps is a tiny fraction of the total number of possible ionization states. [Pg.187]

Procedure. Use Mathcad, QLLSQ, or TableCurve (or, preferably, all three) to determine a value of the ionization energy of hydrogen from the wave numbers in Table 3-4 taken from spectroscopic studies of the Lyman series of the hydrogen spectrum where ni = 1. [Pg.76]

Note that we are interested in nj, the atomic quantum number of the level to which the electron jumps in a spectroscopic excitation. Use the results of this data treatment to obtain a value of the Rydberg constant R. Compare the value you obtain with an accepted value. Quote the source of the accepted value you use for comparison in your report. What are the units of R A conversion factor may be necessary to obtain unit consistency. Express your value for the ionization energy of H in units of hartrees (h), electron volts (eV), and kJ mol . We will need it later. [Pg.76]

For first- and seeond-row atoms, the Is or (2s, 2p) or (3s,3p, 3d) valenee-state ionization energies (aj s), the number of valenee eleetrons ( Elee.) as well as the orbital exponents (es, ep and ej) of Slater-type orbitals used to ealeulate the overlap matrix elements Sp y eorresponding are given below. [Pg.198]

The best-known equation of the type mentioned is, of course, Hammett s equation. It correlates, with considerable precision, rate and equilibrium constants for a large number of reactions occurring in the side chains of m- and p-substituted aromatic compounds, but fails badly for electrophilic substitution into the aromatic ring (except at wi-positions) and for certain reactions in side chains in which there is considerable mesomeric interaction between the side chain and the ring during the course of reaction. This failure arises because Hammett s original model reaction (the ionization of substituted benzoic acids) does not take account of the direct resonance interactions between a substituent and the site of reaction. This sort of interaction in the electrophilic substitutions of anisole is depicted in the following resonance structures, which show the transition state to be stabilized by direct resonance with the substituent ... [Pg.137]

We say the molecule AB has been ionized by electron impact The species that results called the molecular ion, is positively charged and has an odd number of electrons—it IS a cation radical The molecular ion has the same mass (less the negligible mass of a single electron) as the molecule from which it is formed... [Pg.567]


See other pages where Ionization numbers is mentioned: [Pg.409]    [Pg.393]    [Pg.284]    [Pg.295]    [Pg.114]    [Pg.270]    [Pg.1637]    [Pg.12]    [Pg.115]    [Pg.409]    [Pg.393]    [Pg.284]    [Pg.295]    [Pg.114]    [Pg.270]    [Pg.1637]    [Pg.12]    [Pg.115]    [Pg.83]    [Pg.340]    [Pg.27]    [Pg.1145]    [Pg.1424]    [Pg.1433]    [Pg.1822]    [Pg.2050]    [Pg.2208]    [Pg.2477]    [Pg.2798]    [Pg.176]    [Pg.186]    [Pg.187]    [Pg.187]    [Pg.64]    [Pg.83]    [Pg.116]    [Pg.1109]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Atomic number first ionization energy

Atomic number ionization energy

Effective atomic number from ionization energy

Energy derivatives, electron number ionization potential

Flame ionization detector effective carbon number

The Ionized Atmosphere Ion Composition and Number Density

© 2024 chempedia.info