Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids complexes

Ionic liquids complex metals and therefore offer the possibility to develop novel electroless plating baths for coating polymers (e.g. in electronics) without the need for the toxic and problematic organic complexants used in water. [Pg.8]

MIXTURES OF SIMPLE IONIC LIQUIDS COMPLEX FORMATION... [Pg.694]

Mixtures of Simple Ionic Liquids Complex Formation. ... [Pg.801]

Useful ligands for Mizoroki-Heck reactions stem from the family of imidazolium-based ionic liquids which have a 2-pyridyl residue at C-2 [27]. For example, reactions of such compounds with palladium(II) chloride gave palladium(II) ionic liquid complexes like 1 (Scheme 15.1). Mizoroki-Heck reactions of various aryl iodides or bromides, with acrylic esters or styrene in the presence of these catalysts were achieved in yields up to 94%. The catalyst was recycled efficiently. In most applications the organic compound was... [Pg.497]

Reichert WM, Holbrey JD, Vigour KB et al (2006) Approaches to crystallization from ionic liquids complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures Chem Commun 4767—4779... [Pg.40]

Georg, S. Billard, L Quadi, A. Gaillard, C. Petitjean, L. Picquet, M. Solov ev, V. (2010) Determination of Successive complexation constants in an ionic liquid complexation of J02 with NOs" in C4-mimTf2N studied by UV-Vis Spectroscopy. J.Phys.Chem. B 114 4276-4282. [Pg.505]

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

Thus, most ionic liquids are formed from cations that do not contain acidic protons. A summary of the applications and properties of ionic liquids may be found in a number of recent review articles [3]. The most common classes of cations are illustrated in Figure 2.1-1, although low melting point salts based on other cations, such as complex poly cationic amines [4] and heterocycle-containing drugs [5], have also been prepared. [Pg.8]

The alkylation process possesses the advantages that (a) a wide range of cheap haloalkanes are available, and (b) the substitution reactions generally occur smoothly at reasonable temperatures. Furthermore, the halide salts formed can easily be converted into salts with other anions. Although this section will concentrate on the reactions between simple haloalkanes and the amine, more complex side chains may be added, as discussed later in this chapter. The quaternization of amines and phosphines with haloalkanes has been loiown for many years, but the development of ionic liquids has resulted in several recent developments in the experimental techniques used for the reaction. In general, the reaction may be carried out with chloroalkanes, bromoalkanes, and iodoalkanes, with the reaction conditions required becoming steadily more gentle in the order Cl Br I, as expected for nucleophilic substitution reactions. Fluoride salts cannot be formed in this manner. [Pg.9]

If a drybox is not available, the preparation can also be carried out by use of a dry, unreactive solvent (typically an alkane) as a blanket against hydrolysis. This has been suggested in the patent literature as a method for the large-scale industrial preparation of Eewis acid-based ionic liquids, as the solvent also acts as a heat-sink for the exothermic complexation reaction [28]. At the end of the reaction, the ionic liquid forms an immiscible layer beneath the protecting solvent. The ionic liquid may then either be removed by syringe, or else the solvent may be removed by distillation before use. In the former case it is likely that the ionic liquid will be contaminated with traces of the organic solvent, however. [Pg.13]

Traces of bases such as methylimidazole in the final ionic liquid product can play an unfavorable role in some common applications of ionic liquids (such as bipha-sic catalysis). Many electrophilic catalyst complexes will coordinate the base in an irreversible manner and be deactivated. [Pg.25]

A number of different methods to monitor the amount of methylimidazole left in a final ionic liquid are known. NMR spectroscopy is used by most academic groups, but may have a detection limit of about 1 mol%. The photometric analysis described by Holbrey, Seddon, and Wareing has the advantage of being a relatively quick method that can be performed with standard laboratory equipment [13]. This makes it particularly suitable for monitoring of the methylimidazole content during commercial ionic liquid synthesis. The method is based on the formation and colorimetric analysis of the intensely colored complex of l-methylimidazole with cop-per(II) chloride. [Pg.25]

While certain TSILs have been developed to pull metals into the IL phase, others have been developed to keep metals in an IL phase. The use of metal complexes dissolved in IL for catalytic reactions has been one of the most fruitful areas of IL research to date. LLowever, these systems still have a tendency to leach dissolved catalyst into the co-solvents used to extract the product of the reaction from the ionic liquid. Consequently, Wasserscheid et al. have pioneered the use of TSILs based upon the dissolution into a conventional IL of metal complexes that incorporate charged phosphine ligands in their stmctures [16-18]. These metal complex ions become an integral part of the ionic medium, and remain there when the reaction products arising from their use are extracted into a co-solvent. Certain of the charged phosphine ions that form the basis of this chemistry (e.g., P(m-C6H4S03 Na )3) are commercially available, while others may be prepared by established phosphine synthetic procedures. [Pg.37]

The most simple ionic liquids consist of a single cation and single anion. More complex examples can also be considered, by combining of greater numbers of... [Pg.42]

The thermal behavior of many ionic liquids is relatively complex. For a typical IL, cooling from the liquid state causes glass formation at low temperatures solidifica-... [Pg.43]

Transition metal catalysis in liquid/liquid biphasic systems principally requires sufficient solubility and immobilization of the catalysts in the IL phase relative to the extraction phase. Solubilization of metal ions in ILs can be separated into processes, involving the dissolution of simple metal salts (often through coordination with anions from the ionic liquid) and the dissolution of metal coordination complexes, in which the metal coordination sphere remains intact. [Pg.70]

The ionic conductivity of a solvent is of critical importance in its selection for an electrochemical application. There are a variety of DC and AC methods available for the measurement of ionic conductivity. In the case of ionic liquids, however, the vast majority of data in the literature have been collected by one of two AC techniques the impedance bridge method or the complex impedance method [40]. Both of these methods employ simple two-electrode cells to measure the impedance of the ionic liquid (Z). This impedance arises from resistive (R) and capacitive contributions (C), and can be described by Equation (3.6-1) ... [Pg.109]

In pyridinium chloride ionic liquids and in l,2-dimethyl-3-hexylimida2olium chloride ([HMMIMjCl), where the C(2) position is protected by a methyl group, only [PdClJ was observed, whereas in [HMIMjCl, the EXAFS showed the formation of a bis-carbene complex. In the presence of triphenylphosphine, Pd-P coordination was observed in all ionic liquids except where the carbene complex was formed. During the Heck reaction, the formation of palladium was found to be quicker than in the absence of reagents. Overall, the EXAFS showed the presence of small palladium clusters of approximately 1 nm diameter formed in solution. [Pg.145]

So far, there have been few published simulation studies of room-temperature ionic liquids, although a number of groups have started programs in this area. Simulations of molecular liquids have been common for thirty years and have proven important in clarifying our understanding of molecular motion, local stmcture and thermodynamics of neat liquids, solutions and more complex systems at the molecular level [1 ]. There have also been many simulations of molten salts with atomic ions [5]. Room-temperature ionic liquids have polyatomic ions and so combine properties of both molecular liquids and simple molten salts. [Pg.157]

These are typical of ionic liquids and are familiar in simulations and theories of molten salts. The indications of structure in the first peak show that the local packing is complex. There are 5 to 6 nearest neighbors contributing to this peak. More details can be seen in Figure 4.3-3, which shows a contour surface of the three-dimensional probability distribution of chloride ions seen from above the plane of the molecular ion. The shaded regions are places at which there is a high probability of finding the chloride ions relative to any imidazolium ion. [Pg.160]

From the molecular point of view, the self-diffusion coefficient is more important than the mutual diffusion coefficient, because the different self-diffusion coefficients give a more detailed description of the single chemical species than the mutual diffusion coefficient, which characterizes the system with only one coefficient. Owing to its cooperative nature, a theoretical description of mutual diffusion is expected to be more complex than one of self-diffusion [5]. Besides that, self-diffusion measurements are determinable in pure ionic liquids, while mutual diffusion measurements require mixtures of liquids. [Pg.164]

Ionic liquids, however, are often quite viscous, and the measurements are thus beyond the extreme narrowing region. The relaxation rates hence become frequency-dependent. Under these conditions, the equation for the spin-lattice relaxation rate becomes more complex ... [Pg.169]

Wilkes and co-workers have investigated the chlorination of benzene in both acidic and basic chloroaluminate(III) ionic liquids [66]. In the acidic ionic liquid [EMIM]C1/A1C13 (X(A1C13) > 0.5), the chlorination reaction initially gave chlorobenzene, which in turn reacted with a second molecule of chlorine to give dichlorobenzenes. In the basic ionic liquid, the reaction was more complex. In addition to the... [Pg.192]

Friedel-Crafts acylation reactions usually involve the interaction of an aromatic compound with an acyl halide or anhydride in the presence of a catalyst, to form a carbon-carbon bond [74, 75]. As the product of an acylation reaction is less reactive than its starting material, monoacylation usually occurs. The catalyst in the reaction is not a true catalyst, as it is often (but not always) required in stoichiometric quantities. For Friedel-Crafts acylation reactions in chloroaluminate(III) ionic liquids or molten salts, the ketone product of an acylation reaction forms a strong complex with the ionic liquid, and separation of the product from the ionic liquid can be extremely difficult. The products are usually isolated by quenching the ionic liquid in water. Current research is moving towards finding genuine catalysts for this reaction, some of which are described in this section. [Pg.203]

Many transition metal complexes dissolve readily in ionic liquids, which enables their use as solvents for transition metal catalysis. Sufficient solubility for a wide range of catalyst complexes is an obvious, but not trivial, prerequisite for a versatile solvent for homogenous catalysis. Some of the other approaches to the replacement of traditional volatile organic solvents by greener alternatives in transition metal catalysis, namely the use of supercritical CO2 or perfluorinated solvents, very often suffer from low catalyst solubility. This limitation is usually overcome by use of special ligand systems, which have to be synthesized prior to the catalytic reaction. [Pg.213]

In the case of ionic liquids, special ligand design is usually not necessary to obtain catalyst complexes dissolved in the ionic liquid in sufficiently high concentrations. [Pg.213]

However, it should be mentioned that the dissolution process of a solid, crystalline complex in an (often relatively viscous) ionic liquid can sometimes be slow. This is due to restricted mass transfer and can be speeded up either by increasing the exchange surface (ultrasonic bath) or by reducing the ionic liquid s viscosity. The latter is easily achieved by addition of small amounts of a volatile organic solvent that dissolves both the catalyst complex and the ionic liquid. As soon as the solution is homogeneous, the volatile solvent is then removed in vacuo. [Pg.214]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]

Apart from the activation of a biphasic reaction by extraction of catalyst poisons as described above, an ionic liquid solvent can activate homogeneously dissolved transition metal complexes by chemical interaction. [Pg.220]


See other pages where Ionic liquids complexes is mentioned: [Pg.47]    [Pg.47]    [Pg.160]    [Pg.7]    [Pg.16]    [Pg.17]    [Pg.33]    [Pg.34]    [Pg.47]    [Pg.48]    [Pg.70]    [Pg.72]    [Pg.75]    [Pg.101]    [Pg.110]    [Pg.111]    [Pg.145]    [Pg.216]    [Pg.216]    [Pg.220]    [Pg.221]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Complex ionic, liquid chromatography

Complex liquids

Coordination complexes, ionic liquids

Coordination complexes, ionic liquids metal ions

Ionic complexes

Ionic liquids complex formation

Liquid complexation

Metal complex catalysts chloroaluminate ionic liquids

Rhodium complexes supported ionic liquid catalysis

Rhodium complexes supported ionic liquid phase catalysis

Room-temperature ionic liquids complexation study

Room-temperature ionic liquids complexes

Ruthenium complexes ionic liquids

Supported ionic liquid phase (SILP) catalysts incorporating metal complexes

© 2024 chempedia.info