Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquid eutectic

In principle, there is no difference between the pretreatment that a metal should undergo before immersion in an ionic liquid or in an aqueous solution. The sole difference is that the workpiece must be dry before immersion in the ionic liquid. The sensitivity of the ionic liquid to water content is dependent upon the ionic liquid. Eutectic-based ionic liquids are less sensitive to water content than liquids with discrete anions. This is thought to be due to the ability of the chloride anions in the former interacting strongly with the water molecules, decreasing their ability to be reduced. Especially with AICI3-based ionic liquids water has to be strictly avoided. [Pg.290]

The presence of several anions in these ionic liquids has the effect of significantly decreasing the melting point. Considering that the formation of eutectic mixtures of molten salts is widely used to obtain lower melting points, it is surprising that little effort has been put into identifying the effects of mixtures of cations or anions on the physical properties of other ionic liquids [17]. [Pg.48]

Recently, a eutectic mixture of choline chloride and urea (commercially known as Reline) was used as a medium from which CdS, as well as CdSe and ZnS, thin films were electrodeposited for the first time [53]. Reline is a conductive room-temperature ionic liquid (RTIL) with a wide electrochemical window. The voltammetric behavior of the Reline-Cd(II)-sulfur system was investigated, while CdS thin films were deposited at constant potential and characterized by photocurrent and electrolyte electroabsorbance spectroscopies. [Pg.93]

Many of these problems may be overcome by using ionic liquids based on sugars [35] or deep eutectic mixtures. Deep eutectic mixtures such as that derived from choline chloride and urea (m. pt. 12°C [36]) or carboxylic acids [37] can be liquids and have very low vapour pressure. They have been successfully used as electrochemical solvents, but their use in catalysis remains little explored. Urea is a fertiliser and choline chloride (Vitamin B4) is a component of chicken feed so the mixture is environmentally acceptable. [Pg.245]

Related to ionic liquids are substances known as deep eutectic solvents or mixtures. A series of these materials based on choline chloride (HOCH2CH2NMe3Cl) and either zinc chloride or urea have been reported (Abbott et al., 2002 2003). The urea/choline chloride material has many of the advantages of more well-known ionic liquids (e.g. low volatility), but can be sourced from renewable feedstocks, is non-toxic and is readily biodegradable. However, it is not an inert solvent and this has been exploited in the functionalisation of the surface of cellulose fibres in cotton wool (Abbott et al, 2006). Undoubtedly, this could be extended to other cellulose-based materials, biopolymers, synthetic polymers and possibly even small molecules. [Pg.59]

The recognised definition of an ionic liquid is an ionic material that is liquid below 100 °C but leaves the significant question as to what constitutes an ionic material. Some authors limit the definition to cations with discrete anions e.g. BF4-, NO3. This definition excludes the original work on chloroaluminate systems and the considerable work on other eutectic systems and is therefore unsatisfactory. Systems with anionic species formed by complex equilibria are difficult to categorise as the relative amounts of ionic species depend strongly on the composition of the different components. [Pg.5]

Ionic liquids have also been separated into first and second generation liquids [10] where first generation liquids are those based on eutectics and second generation have discrete anions [17]. Others have sought to further divide the first generation liquids into separate types depending on the nature of the Lewis or Bronsted acid that complexes [18]. While there is some dispute whether eutectics with Bransted acids constitute ionic liquids at all there are others who seek to widen the description of ionic liquids to include materials such as salt hydrates [19]. [Pg.5]

Ionic liquids with discrete anions have a fixed anion structure but in the eutectic-based liquids at some composition point the Lewis or Bronsted acid will be in considerable excess and the system becomes a solution of salt in the acid. A similar scenario also exists with the incorporation of diluents or impurities and hence we need to define at what composition an ionic liquid is formed. Many ionic liquids with discrete anions are hydrophilic and the absorption of water is found sometimes to have a significant effect upon the viscosity and conductivity of the liquid [20-22], Two recent approaches to overcome this difficulty have been to classify ionic liquids in terms of their charge mobility characteristics [23] and the correlation between the molar conductivity and fluidity of the liquids [24], This latter approach is thought by some to be due to the validity of the Walden rule... [Pg.6]

A major breakthrough was achieved in 1951 with the report of Hurley and Wier. They noticed that a mixture of N-ethylpyridinium bromide (EtPyBr) and AICI3 with a eutectic composition of 1 2 X(AlCh) = 0.66 h of EtPyBr to AICI3 became liquid at unusually low temperatures [2], They investigated these melts with regard to their potential use in the electrodeposition of aluminum at ambient temperature [3]. Several studies were carried out on this system, however, its use was very limited since it is only liquid at a mole fraction of X(A1C13) = 0.66 and the ease of oxidation of the bromide ion limits the electrochemical stability. In the following years the main interest in ionic liquids was focused on electrochemical applications [4—6]. [Pg.16]

Eutectic mixtures have been used extensively for applications of molten salts to reduce the operating temperature and this is where the significant area of ionic liquids developed from i.e. the quest to find aluminum-based salt mixtures. While the development of aluminum-containing ionic liquids is technologically very important for the field of metal deposition it is clear that there are many other issues that also need to be addressed and hence methods need to be developed to incorporate a wide range of other metals into ionic liquid formulations. [Pg.32]

The effect of the quaternary ammonium cations is quite complex because the smaller cations depress the freezing point more because the halide salts of the smaller cations also have a higher freezing point the net result is that all of the eutectic mixtures will have reasonably similar freezing points. Hence the cation is observed to have little effect on the absolute freezing point of the eutectic-based ionic liquids. [Pg.36]

The ability to vary the composition of Lewis or Bronsted acid adds an additional dimension to the tuneability of the eutectic-based ionic liquids. It has been shown that the Lewis acidity of the liquid affects not only the physical properties of the liquids but also the electrochemical behavior. Type I ionic liquids are also clearly... [Pg.36]

The conductivities of Type I ionic liquids based on anhydrous zinc and iron salts tend to be lower than those of the corresponding aluminum ionic liquids. This is due largely to the higher viscosity of the former, primarily because of the large size of the ions and the availability of suitably sized holes in the ionic liquids for the ions to move into. This has been quantified by the application of hole theory as is explained in Section 2.3.4. In general imidazolium-based liquids have lower viscosities and higher conductivities than the corresponding pyridinium or quaternary ammonium eutectics formed under the same conditions. [Pg.37]

This chapter shows that eutectic-based ionic liquids can be made in a variety of ways. The above description of liquids falling into three types is by no means exclusive and will certainly expand over the coming years. While there are disadvantages in terms of viscosity and conductivity these are outweighed for many metal deposition processes by issues such as cost, ease of manufacture, decreased toxicity and insensitivity to moisture. The high viscosity of some of these liquids could be ameliorated in many circumstances by the addition of inert diluents. [Pg.42]

The physical principles underlying eutectic-based ionic liquids are now relatively well understood, however, the liquids described above have tended to be less academically fashionable and have received comparatively little attention. Concerted effort with these types of liquids could lead to optimization of their properties such that they would be suitable for commercial deposition processes. [Pg.42]

Section 4.3 is devoted to electrodeposition in a special class of deep eutectic solvents/ionic liquids which are based on well-priced educts such as e.g. choline chloride. The impressive aspect of these liquids is their easy operation, even under air, as well as their large-scale commercial availability. One disadvantage has to be mentioned the choline chloride-based liquids especially are currently not yet... [Pg.83]

The electrodeposition of chromium in a mixture of choline chloride and chromium(III) chloride hexahydrate has been reported recently [39]. A dark green, viscous liquid is obtained by mixing choline chloride with chromium(III) chloride hexahydrate and the physical properties of this deep eutectic solvent are characteristic of an ionic liquid. The eutectic composition is found to be 1 2 choline chloride/chromium chloride. From this ionic liquid chromium can be electrode-posited efficiently to yield a crack-free deposit [39]. Addition of LiCl to the choline chloride-CrCl3-6H20 liquid was found to allow the deposition of nanocrystalline black chromium films [40], The use of this ionic liquid might offer an environmentally friendly process for electrodeposition of chromium instead of the current chromic acid-based baths. However, some efforts are still necessary to get shining... [Pg.95]

The preceding chapters have shown that the majority of metals can now be electrodeposited from ambient-temperature ionic liquids. However, this does not necessarily mean that the liquid with the widest potential window will negate the use of all other ionic liquids. Rather, it is most likely that ionic liquids will be task-specific with discrete anions being used for metals that cannot be electrodeposited from aqueous solutions such as Al, Li, Ti, V and W. Type I eutectics will probably be the most suitable for Al, Ga and Ge. Type II eutectics are most suitable for Cr and Type III are most suited to Zn, Cu, Ag and associated alloys. Type III will also find application in metal winning, oxide recycling and electropolishing. To date most practically important metals have been electrodeposited from ionic liquids and a comprehensive review is given in articles by Abbott [99] and Endres [100-102],... [Pg.103]

In this chapter we will concentrate on the deposition of metals from eutectic-based ionic liquids. These have been developed since the end of the 1990s, primarily by our group and that of Sun. Figure 4.10 shows just some of the metals that... [Pg.103]

A significant number of studies have characterized the physical properties of eutectic-based ionic liquids but these have tended to focus on bulk properties such as viscosity, conductivity, density and phase behavior. These are all covered in Chapter 2.3. Some data are now emerging on speciation but little information is available on local properties such as double layer structure or adsorption. Deposition mechanisms are also relatively rare as are studies on diffusion. Hence the differences between metal deposition in aqueous and ionic liquids are difficult to analyse because of our lack of understanding about processes occurring close to the electrode/liquid interface. [Pg.104]


See other pages where Ionic liquid eutectic is mentioned: [Pg.3]    [Pg.47]    [Pg.48]    [Pg.297]    [Pg.84]    [Pg.98]    [Pg.47]    [Pg.48]    [Pg.297]    [Pg.380]    [Pg.138]    [Pg.5]    [Pg.12]    [Pg.15]    [Pg.31]    [Pg.31]    [Pg.32]    [Pg.33]    [Pg.33]    [Pg.35]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.39]    [Pg.39]    [Pg.41]    [Pg.100]    [Pg.104]    [Pg.106]    [Pg.108]   
See also in sourсe #XX -- [ Pg.191 , Pg.193 ]




SEARCH



Electrodeposition eutectic-based ionic liquid

Eutectic

Eutectic liquid

Eutectic systems inorganic ionic liquids

Eutectic-based Ionic Liquids

© 2024 chempedia.info